Slice sampler and metropolis hastings approaches for bayesian analysis of extreme data
Modelling the tails of distributions is important in many areas of research where the risk of unusually small or large events are of interest. In this research, application of extreme value theory within a Bayesian framework using the Metropolis Hastings algorithm and the slice sampler algorithm...
محفوظ في:
المؤلف الرئيسي: | Rostami, Mohammad |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/69793/1/IPM%202016%2010%20-%20IR.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Bayesian approach to errors-in-variables in count data regression models /
بواسطة: Nur Aainaa Rozliman
منشور في: (2018) -
Extreme air pollutant data analysis using classical and Bayesian approaches
بواسطة: Mohd Amin, Nor Azrita
منشور في: (2015) -
Bayesian reliability analysis and prediction techniques for reliability analysis and prediction using a combination of Bayesian methods and information of Bayesian methods and information theory together with appropriate computer programs are developed /
بواسطة: Mohd. Rasid Yaakob
منشور في: (1987) -
Hierarchical Bayesian Spatial Models for Disease Mortality Rates
بواسطة: Mohamed Elobaid, Rafida
منشور في: (2009) -
Bayesian network modeling of gastrointestinal bleeding
بواسطة: Aisha, Nazziwa
منشور في: (2013)