Slice sampler and metropolis hastings approaches for bayesian analysis of extreme data
Modelling the tails of distributions is important in many areas of research where the risk of unusually small or large events are of interest. In this research, application of extreme value theory within a Bayesian framework using the Metropolis Hastings algorithm and the slice sampler algorithm...
Saved in:
主要作者: | Rostami, Mohammad |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2016
|
主题: | |
在线阅读: | http://psasir.upm.edu.my/id/eprint/69793/1/IPM%202016%2010%20-%20IR.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Bayesian approach to errors-in-variables in count data regression models /
由: Nur Aainaa Rozliman
出版: (2018) -
Extreme air pollutant data analysis using classical and Bayesian approaches
由: Mohd Amin, Nor Azrita
出版: (2015) -
Bayesian reliability analysis and prediction techniques for reliability analysis and prediction using a combination of Bayesian methods and information of Bayesian methods and information theory together with appropriate computer programs are developed /
由: Mohd. Rasid Yaakob
出版: (1987) -
Hierarchical Bayesian Spatial Models for Disease Mortality Rates
由: Mohamed Elobaid, Rafida
出版: (2009) -
Bayesian network modeling of gastrointestinal bleeding
由: Aisha, Nazziwa
出版: (2013)