Computation of three topological indices on some molecular graphs and families of nanostar dendrimers

Chemical graph theory is a branch of mathematical chemistry which applies graph theory in mathematical modeling of chemical phenomena. One of the most active fields of research in chemical graph theory is the study of topological indices that can be used for describing and predicting physicochemical...

Full description

Saved in:
Bibliographic Details
Main Author: Haoer, Raad Sehen
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/77178/1/IPM%202018%209%20-%20IR.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.77178
record_format uketd_dc
spelling my-upm-ir.771782020-03-05T01:57:16Z Computation of three topological indices on some molecular graphs and families of nanostar dendrimers 2018-06 Haoer, Raad Sehen Chemical graph theory is a branch of mathematical chemistry which applies graph theory in mathematical modeling of chemical phenomena. One of the most active fields of research in chemical graph theory is the study of topological indices that can be used for describing and predicting physicochemical and pharmacological properties of organic compounds. A topological index is a single unique number characteristic of the molecular graph and is mathematically known as the graph invariant. Eccentric connectivity Index, Zagreb-eccentricity indices and Wiener index are three of the most popular topological indices and used in wide spectrum of applications in chemical graph theory. Motivated by the works done on characterization of mathematical properties for some nanostructures (dendrimers, nanotubes, nanotori, fullerenes etc.), we continue to investigate and obtain novelty formulas of the eccentric connectivity index for unicyclic chemical graph, chemical trees and some families of nanostar dendrimers. Also, we consider novelty formulas of the Zagreb-eccentricity indices for some families of nanostar dendrimers. Finally, novelty formulas for Wiener index of a new class of nanostar dendrimers are considered and new formulas associated with it are determined. In this thesis, we study and analyses the molecular structures and structural properties of chemical compounds with the objective to represent them graphically and construct new classes of graphs. We use mathematical methods of mathematical induction and mathematical logic to arrive at our theorems. In particular, the Eccentric Connectivity Indices ξ (G) are obtained for certain special graphs constructed by joining some special graphs to path graph. Through those graphs constructed are found ξ (G) for graphs associated with some of molecular graphs such as chemical trees, chemical unicyclic graphs and some infinite families of nanostar dendrimers. Also, the Zagreb-eccentricity indices Z(G) are found for some families of chemical trees, chemical unicyclic graphs and some infinite families of nanostar dendrimers. Finally, novel formulas for Wiener index of some dendrimers such as Polyphenelene dendrimers are established. Based on these investigations and graphical analysis novel formulas for the topological indices of these chemical compounds and nanotechnology are then obtained. Chemistry - Mathematics Graph theory - Case studies Algebraic topology 2018-06 Thesis http://psasir.upm.edu.my/id/eprint/77178/ http://psasir.upm.edu.my/id/eprint/77178/1/IPM%202018%209%20-%20IR.pdf text en public doctoral Universiti Putra Malaysia Chemistry - Mathematics Graph theory - Case studies Algebraic topology Md. Said, Mohamad Rushdan
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
advisor Md. Said, Mohamad Rushdan
topic Chemistry - Mathematics
Graph theory - Case studies
Algebraic topology
spellingShingle Chemistry - Mathematics
Graph theory - Case studies
Algebraic topology
Haoer, Raad Sehen
Computation of three topological indices on some molecular graphs and families of nanostar dendrimers
description Chemical graph theory is a branch of mathematical chemistry which applies graph theory in mathematical modeling of chemical phenomena. One of the most active fields of research in chemical graph theory is the study of topological indices that can be used for describing and predicting physicochemical and pharmacological properties of organic compounds. A topological index is a single unique number characteristic of the molecular graph and is mathematically known as the graph invariant. Eccentric connectivity Index, Zagreb-eccentricity indices and Wiener index are three of the most popular topological indices and used in wide spectrum of applications in chemical graph theory. Motivated by the works done on characterization of mathematical properties for some nanostructures (dendrimers, nanotubes, nanotori, fullerenes etc.), we continue to investigate and obtain novelty formulas of the eccentric connectivity index for unicyclic chemical graph, chemical trees and some families of nanostar dendrimers. Also, we consider novelty formulas of the Zagreb-eccentricity indices for some families of nanostar dendrimers. Finally, novelty formulas for Wiener index of a new class of nanostar dendrimers are considered and new formulas associated with it are determined. In this thesis, we study and analyses the molecular structures and structural properties of chemical compounds with the objective to represent them graphically and construct new classes of graphs. We use mathematical methods of mathematical induction and mathematical logic to arrive at our theorems. In particular, the Eccentric Connectivity Indices ξ (G) are obtained for certain special graphs constructed by joining some special graphs to path graph. Through those graphs constructed are found ξ (G) for graphs associated with some of molecular graphs such as chemical trees, chemical unicyclic graphs and some infinite families of nanostar dendrimers. Also, the Zagreb-eccentricity indices Z(G) are found for some families of chemical trees, chemical unicyclic graphs and some infinite families of nanostar dendrimers. Finally, novel formulas for Wiener index of some dendrimers such as Polyphenelene dendrimers are established. Based on these investigations and graphical analysis novel formulas for the topological indices of these chemical compounds and nanotechnology are then obtained.
format Thesis
qualification_level Doctorate
author Haoer, Raad Sehen
author_facet Haoer, Raad Sehen
author_sort Haoer, Raad Sehen
title Computation of three topological indices on some molecular graphs and families of nanostar dendrimers
title_short Computation of three topological indices on some molecular graphs and families of nanostar dendrimers
title_full Computation of three topological indices on some molecular graphs and families of nanostar dendrimers
title_fullStr Computation of three topological indices on some molecular graphs and families of nanostar dendrimers
title_full_unstemmed Computation of three topological indices on some molecular graphs and families of nanostar dendrimers
title_sort computation of three topological indices on some molecular graphs and families of nanostar dendrimers
granting_institution Universiti Putra Malaysia
publishDate 2018
url http://psasir.upm.edu.my/id/eprint/77178/1/IPM%202018%209%20-%20IR.pdf
_version_ 1747813207221731328