Modelling doubly interval censored survival data via the log logistic distribution with covariate

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Loh, Yue Fang
التنسيق: أطروحة
اللغة:English
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/92503/1/FS%202018%2036%20-T.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my-upm-ir.92503
record_format uketd_dc
spelling my-upm-ir.925032022-05-12T06:30:21Z Modelling doubly interval censored survival data via the log logistic distribution with covariate 2017-12 Loh, Yue Fang Mathematics Mathematical models 2017-12 Thesis http://psasir.upm.edu.my/id/eprint/92503/ http://psasir.upm.edu.my/id/eprint/92503/1/FS%202018%2036%20-T.pdf text en public doctoral Universiti Putra Malaysia Mathematics Mathematical models Arasan, Jayanthi
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
advisor Arasan, Jayanthi
topic Mathematics
Mathematical models

spellingShingle Mathematics
Mathematical models

Loh, Yue Fang
Modelling doubly interval censored survival data via the log logistic distribution with covariate
description
format Thesis
qualification_level Doctorate
author Loh, Yue Fang
author_facet Loh, Yue Fang
author_sort Loh, Yue Fang
title Modelling doubly interval censored survival data via the log logistic distribution with covariate
title_short Modelling doubly interval censored survival data via the log logistic distribution with covariate
title_full Modelling doubly interval censored survival data via the log logistic distribution with covariate
title_fullStr Modelling doubly interval censored survival data via the log logistic distribution with covariate
title_full_unstemmed Modelling doubly interval censored survival data via the log logistic distribution with covariate
title_sort modelling doubly interval censored survival data via the log logistic distribution with covariate
granting_institution Universiti Putra Malaysia
publishDate 2017
url http://psasir.upm.edu.my/id/eprint/92503/1/FS%202018%2036%20-T.pdf
_version_ 1747813744240492544