Analysis of Stability of Some Population Models with Harvesting

Applied mathematics, which means application of mathematics to problems, is a wonderful and exciting subject. It is the essence of the theoretical approach to science and engineering. It could refer to the use of mathematics in many varied areas. Mathematical model is applied to predict the behav...

Full description

Saved in:
Bibliographic Details
Main Author: Toaha, Syamsuddin
Format: Thesis
Language:English
English
Published: 2000
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/9553/1/FSAS_2000_7_A.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.9553
record_format uketd_dc
spelling my-upm-ir.95532013-09-26T01:35:11Z Analysis of Stability of Some Population Models with Harvesting 2000-09 Toaha, Syamsuddin Applied mathematics, which means application of mathematics to problems, is a wonderful and exciting subject. It is the essence of the theoretical approach to science and engineering. It could refer to the use of mathematics in many varied areas. Mathematical model is applied to predict the behaviour of the system. This behaviour is then interpreted in terms of the word model so that we know the behaviour of the real situation. We can apply mathematical languages to transform ecology's phenomena into mathematical model, including changes of popUlations and how the populations of one system can affect the population of another. The model is expected to give us more information about the real situation and as a tool to make a decision. Some models that constitute autonomous differential equations are presented; Malthusian and logistic model for single population; two independent populations, competing model, and prey-predator model for two populations; and extension of prey-predator model involving three populations. In this thesis we will study the effect of harvesting on models. The models are based on Lotka-Volterra model. All models involve harvesting problem and some stable equilibrium points related to maximum profit or maximum sustainable yield problem. The objectives of this thesis are to analyse, to investigate the stability of equilibrium point of the models and to control the exploitation efforts such that the population will not vanish forever although being exploited. The methods used are linearization method, eigenvalues method, qualitative stability test and Hurwitz stability test. Some assumptions are made to avoid complexity. Maple V software release 4 is used to determine the equilibrium points of the model and also to plot the trajectories and draw the surface. The single population model is solved analytically.We found that in single population model, the existence of population depends on the initial population and harvesting rate. In model that involves two and three populations, the populations can live in coexistence although harvesting is applied. The level of harvesting, however, must be strictly controlled. Harvesting - Mathematical models 2000-09 Thesis http://psasir.upm.edu.my/id/eprint/9553/ http://psasir.upm.edu.my/id/eprint/9553/1/FSAS_2000_7_A.pdf application/pdf en public masters Universiti Putra Malaysia Harvesting - Mathematical models Faculty of Science and Environmental Studies English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Harvesting - Mathematical models


spellingShingle Harvesting - Mathematical models


Toaha, Syamsuddin
Analysis of Stability of Some Population Models with Harvesting
description Applied mathematics, which means application of mathematics to problems, is a wonderful and exciting subject. It is the essence of the theoretical approach to science and engineering. It could refer to the use of mathematics in many varied areas. Mathematical model is applied to predict the behaviour of the system. This behaviour is then interpreted in terms of the word model so that we know the behaviour of the real situation. We can apply mathematical languages to transform ecology's phenomena into mathematical model, including changes of popUlations and how the populations of one system can affect the population of another. The model is expected to give us more information about the real situation and as a tool to make a decision. Some models that constitute autonomous differential equations are presented; Malthusian and logistic model for single population; two independent populations, competing model, and prey-predator model for two populations; and extension of prey-predator model involving three populations. In this thesis we will study the effect of harvesting on models. The models are based on Lotka-Volterra model. All models involve harvesting problem and some stable equilibrium points related to maximum profit or maximum sustainable yield problem. The objectives of this thesis are to analyse, to investigate the stability of equilibrium point of the models and to control the exploitation efforts such that the population will not vanish forever although being exploited. The methods used are linearization method, eigenvalues method, qualitative stability test and Hurwitz stability test. Some assumptions are made to avoid complexity. Maple V software release 4 is used to determine the equilibrium points of the model and also to plot the trajectories and draw the surface. The single population model is solved analytically.We found that in single population model, the existence of population depends on the initial population and harvesting rate. In model that involves two and three populations, the populations can live in coexistence although harvesting is applied. The level of harvesting, however, must be strictly controlled.
format Thesis
qualification_level Master's degree
author Toaha, Syamsuddin
author_facet Toaha, Syamsuddin
author_sort Toaha, Syamsuddin
title Analysis of Stability of Some Population Models with Harvesting
title_short Analysis of Stability of Some Population Models with Harvesting
title_full Analysis of Stability of Some Population Models with Harvesting
title_fullStr Analysis of Stability of Some Population Models with Harvesting
title_full_unstemmed Analysis of Stability of Some Population Models with Harvesting
title_sort analysis of stability of some population models with harvesting
granting_institution Universiti Putra Malaysia
granting_department Faculty of Science and Environmental Studies
publishDate 2000
url http://psasir.upm.edu.my/id/eprint/9553/1/FSAS_2000_7_A.pdf
_version_ 1747810980301111296