A Robust Ridge Regression For Multicollinearity Problem In The Presence Of Outliers In The Data
The Ordinary Least Square (OLS) is a widely used method of estimation in classical regression analysis to investigate the linear relationship among the variables of interest. The OLS estimator is the Best Linear Unbiased Estimator (BLUE) when the two assumptions are fulfilled: i) independency of exp...
Saved in:
主要作者: | Nur Aqilah Binti Ferdaos |
---|---|
格式: | Thesis |
语言: | en_US |
主题: | |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Development of robust procedures for partial least square regression with application to near infrared spectral data
由: Silalahi, Divo Dharma
出版: (2021) -
Robust estimation of a linear regression model with heteroscedastic errors /
由: Mansor, Mansor Omar
出版: (1996) -
A robust ridge regression estimator in the presence of outliers and multicollinearity /
由: Marina Zahari
出版: (2001) -
Solution To The Multicollinearity Problem In Ridge Regression Model
由: Hanan Moh. B. Duzan -
Robust diagnostics and parameter estimation methods in linear and nonlinear regression based on nu support vector regression for high dimensional data
由: Rashid, Al-Dulaimi Abdullah Mohammed
出版: (2022)