Colour-Texture Fusion In Image Segmentation For Content-Based Image Retrieval Systems

Kemajuan teknologi komputer serta kepopularan World Wide Web telah membawa kepada peningkatan bilangan gambar yang berbentuk digital. Selari dengan perkembangan itu, sistem pencapaian imej berdasarkan kandungan (content-based image retrieval, CBIR) telah menjadi satu topic kajian yang berkembang...

全面介紹

Saved in:
書目詳細資料
主要作者: Ooi , Woi Seng
格式: Thesis
語言:English
出版: 2007
主題:
在線閱讀:http://eprints.usm.my/31131/1/OOI_WOI_SENG.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Kemajuan teknologi komputer serta kepopularan World Wide Web telah membawa kepada peningkatan bilangan gambar yang berbentuk digital. Selari dengan perkembangan itu, sistem pencapaian imej berdasarkan kandungan (content-based image retrieval, CBIR) telah menjadi satu topic kajian yang berkembang dengan pesatnya sejak kebelakangan ini. Proses segmentasi merupakan langkah prapemprosesan yang mempunyai pengaruh penting terhadap prestasi sistem CBIR. Oleh itu, dalam penyelidikan ini, satu rangka segmentasi imej yang baru, bersesuaian untuk pertanyaan kawasan (region queries) dalam CBIR, telah dipersembahkan. Teknik yang digunakan merupakan gabungan ciri-ciri warna dan tekstur gambar, dengan bantuan algoritma fuzzy c-means clustering (FCM) yang telah diubahsuai. With the advances in computer technologies and the popularity of the World Wide Web, the volume of digital images has grown rapidly. In parallel with this growth, content-based image retrieval (CBIR) is becoming a fast growing research area in recent years. Image segmentation is an important pre-processing step which has a great influence on the performance of CBIR systems. In this research, a novel image segmentation framework, dedicated to region queries in CBIR, is presented. The underlying technique is based on the fusion of colour and texture features by a modified fuzzy c-means clustering (FCM) algorithm.