Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm
Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya berkurangan bagi tugas-tugas yang lebih besar dan kompleks....
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2001
|
Subjects: | |
Online Access: | http://eprints.usm.my/31464/1/ZARITA_ZAINUDDIN.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-usm-ep.31464 |
---|---|
record_format |
uketd_dc |
spelling |
my-usm-ep.314642017-01-06T07:49:22Z Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm 2001-06 Zainuddin, Zarita QA1-939 Mathematics Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya berkurangan bagi tugas-tugas yang lebih besar dan kompleks. Dalam tesis ini, faktor-faktor yang menguasai kepantasan pembelajaran algoritma perambatan balik diselidik dan dianalisa secara matematik untuk membangunkan strategi-strategi bagi memperbaiki prestasi algoritma pembelajaran rangkaian neural ini. Faktor-faktor ini meliputi pilihan pemberat awal, pilihan fungsi pengaktifan dan nilai sasaran serta dua parameter perambatan, iaitu kadar pembelajaran dan faktor momentum. The backpropagation algorithm has proven to be one of the most successful neural network learning algorithms. However, as with many gradient based optimization methods, it converges slowly and it scales up poorly as tasks become larger and more complex. In this thesis, factors that govern the learning speed of the backpropagation algorithm are investigated and mathematically analyzed in order to develop strategies to improve the performance of this neural network learning algorithm. These factors include the choice of initial weights, the choice of activation function and target values, and the two backpropagation parameters, the learning rate and the momentum factor. 2001-06 Thesis http://eprints.usm.my/31464/ http://eprints.usm.my/31464/1/ZARITA_ZAINUDDIN.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Matematik |
institution |
Universiti Sains Malaysia |
collection |
USM Institutional Repository |
language |
English |
topic |
QA1-939 Mathematics |
spellingShingle |
QA1-939 Mathematics Zainuddin, Zarita Acceleration Strategies For The Backpropagation Neural Network Learning Algorithm |
description |
Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural
yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman
yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya
berkurangan bagi tugas-tugas yang lebih besar dan kompleks.
Dalam tesis ini, faktor-faktor yang menguasai kepantasan pembelajaran algoritma
perambatan balik diselidik dan dianalisa secara matematik untuk membangunkan
strategi-strategi bagi memperbaiki prestasi algoritma pembelajaran rangkaian neural ini.
Faktor-faktor ini meliputi pilihan pemberat awal, pilihan fungsi pengaktifan dan nilai
sasaran serta dua parameter perambatan, iaitu kadar pembelajaran dan faktor
momentum.
The backpropagation algorithm has proven to be one of the most successful neural
network learning algorithms. However, as with many gradient based optimization
methods, it converges slowly and it scales up poorly as tasks become larger and more
complex.
In this thesis, factors that govern the learning speed of the backpropagation algorithm
are investigated and mathematically analyzed in order to develop strategies to improve
the performance of this neural network learning algorithm. These factors include the
choice of initial weights, the choice of activation function and target values, and the two
backpropagation parameters, the learning rate and the momentum factor. |
format |
Thesis |
qualification_name |
Doctor of Philosophy (PhD.) |
qualification_level |
Doctorate |
author |
Zainuddin, Zarita |
author_facet |
Zainuddin, Zarita |
author_sort |
Zainuddin, Zarita |
title |
Acceleration Strategies For The Backpropagation
Neural Network Learning Algorithm
|
title_short |
Acceleration Strategies For The Backpropagation
Neural Network Learning Algorithm
|
title_full |
Acceleration Strategies For The Backpropagation
Neural Network Learning Algorithm
|
title_fullStr |
Acceleration Strategies For The Backpropagation
Neural Network Learning Algorithm
|
title_full_unstemmed |
Acceleration Strategies For The Backpropagation
Neural Network Learning Algorithm
|
title_sort |
acceleration strategies for the backpropagation
neural network learning algorithm |
granting_institution |
Universiti Sains Malaysia |
granting_department |
Pusat Pengajian Sains Matematik |
publishDate |
2001 |
url |
http://eprints.usm.my/31464/1/ZARITA_ZAINUDDIN.pdf |
_version_ |
1747820430796783616 |