Pair Bonds In Genetic Algorithm

Tesis ini membentangkan siasatan komprehensif berasaskan konsep ikatan pasangan (pasangan monogami) yang akan dilaksanakan dalam fasa rekombinasi algoritma genetik (GA). GA merupakan teknik pencarian heuristik berdasarkan prinsip dan mekanisma pilihan semula jadi dan teori "survival of the f...

Full description

Saved in:
Bibliographic Details
Main Author: Lim , Ting Yee
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.usm.my/31889/1/LIM_TING_YEE_%28HJ%29.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.31889
record_format uketd_dc
spelling my-usm-ep.318892019-04-12T05:25:42Z Pair Bonds In Genetic Algorithm 2015-07 Lim , Ting Yee QA75.5-76.95 Electronic computers. Computer science Tesis ini membentangkan siasatan komprehensif berasaskan konsep ikatan pasangan (pasangan monogami) yang akan dilaksanakan dalam fasa rekombinasi algoritma genetik (GA). GA merupakan teknik pencarian heuristik berdasarkan prinsip dan mekanisma pilihan semula jadi dan teori "survival of the fittest". Biasanya kromosom ibubapa akan dipilih pada setiap generasi bagi menghasilkan kromosom anak melalui operasi percantuman (crossover) dan mutasi. Proses ini diulangi sehingga syarat berhenti dipenuhi. Tetapi kadang-kala alam semula jadi mempamerkan pembentukan hubungan yang berkekalan antara pasangan mengawan. Dalam masyarakat manusia moden, sesetengah burung, ikan, tikus, dan cicak, ikatan pasangan merupakan aspek penting dalam tingkah laku sosial mereka. Mereka biasanya mengekalkan pasangan yang sama sepanjang hidup - monogami sosial. Oleh itu, tesis ini mengkaji kesesuaian aplikasi ikatan pasangan dalam GA. Dua kaedah GA baru akan dibentangkan: Kaedah pertama dikenali sebagai Algoritma Genetik Ikatan Monogami (MopGA). Dalam MopGA, kromosom ibubapa akan berkekalan sehingga beberapa generasi. This work presents a comprehensive investigation on the concept of pair bonds (monogamous pairs) for the mating phase of genetic algorithms (GAs). GA is a heuristic search technique based on the principles and mechanisms of natural selection. Traditionally, parents are selected at every generation to reproduce offspring through crossover and mutation operations. The process reiterates until some termination conditions are met. However, nature sometimes exhibits the formation of enduring relationships between mating partners. In modern human society, some avian models, fish, rodents, and even lizards, pair bonds are integral aspects of their social behaviour. These species usually share the same mating partners throughout their lifetime - socially monogamous. Taking the cue from nature, this thesis studies the feasibilities of pair bonds in GA. Consequently, two methodologies are proposed: Firstly, in the Monogamous Pairs Genetic Algorithm (MopGA), parents are bonded and mated consistently over several predefined generations. Selection of new parents pairs will only take place at the end of pair bond tenure. Meanwhile, competition occurs between siblings to ensure only the best offspring are retained. Occasional infidelity generates variety, spreads genetic information across the population and speeds up convergence. Secondly, to improve the ease-of-use of MopGA, an adaptive MopGA (AMopGA) is introduced. 2015-07 Thesis http://eprints.usm.my/31889/ http://eprints.usm.my/31889/1/LIM_TING_YEE_%28HJ%29.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Komputer
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA75.5-76.95 Electronic computers
Computer science
spellingShingle QA75.5-76.95 Electronic computers
Computer science
Lim , Ting Yee
Pair Bonds In Genetic Algorithm
description Tesis ini membentangkan siasatan komprehensif berasaskan konsep ikatan pasangan (pasangan monogami) yang akan dilaksanakan dalam fasa rekombinasi algoritma genetik (GA). GA merupakan teknik pencarian heuristik berdasarkan prinsip dan mekanisma pilihan semula jadi dan teori "survival of the fittest". Biasanya kromosom ibubapa akan dipilih pada setiap generasi bagi menghasilkan kromosom anak melalui operasi percantuman (crossover) dan mutasi. Proses ini diulangi sehingga syarat berhenti dipenuhi. Tetapi kadang-kala alam semula jadi mempamerkan pembentukan hubungan yang berkekalan antara pasangan mengawan. Dalam masyarakat manusia moden, sesetengah burung, ikan, tikus, dan cicak, ikatan pasangan merupakan aspek penting dalam tingkah laku sosial mereka. Mereka biasanya mengekalkan pasangan yang sama sepanjang hidup - monogami sosial. Oleh itu, tesis ini mengkaji kesesuaian aplikasi ikatan pasangan dalam GA. Dua kaedah GA baru akan dibentangkan: Kaedah pertama dikenali sebagai Algoritma Genetik Ikatan Monogami (MopGA). Dalam MopGA, kromosom ibubapa akan berkekalan sehingga beberapa generasi. This work presents a comprehensive investigation on the concept of pair bonds (monogamous pairs) for the mating phase of genetic algorithms (GAs). GA is a heuristic search technique based on the principles and mechanisms of natural selection. Traditionally, parents are selected at every generation to reproduce offspring through crossover and mutation operations. The process reiterates until some termination conditions are met. However, nature sometimes exhibits the formation of enduring relationships between mating partners. In modern human society, some avian models, fish, rodents, and even lizards, pair bonds are integral aspects of their social behaviour. These species usually share the same mating partners throughout their lifetime - socially monogamous. Taking the cue from nature, this thesis studies the feasibilities of pair bonds in GA. Consequently, two methodologies are proposed: Firstly, in the Monogamous Pairs Genetic Algorithm (MopGA), parents are bonded and mated consistently over several predefined generations. Selection of new parents pairs will only take place at the end of pair bond tenure. Meanwhile, competition occurs between siblings to ensure only the best offspring are retained. Occasional infidelity generates variety, spreads genetic information across the population and speeds up convergence. Secondly, to improve the ease-of-use of MopGA, an adaptive MopGA (AMopGA) is introduced.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Lim , Ting Yee
author_facet Lim , Ting Yee
author_sort Lim , Ting Yee
title Pair Bonds In Genetic Algorithm
title_short Pair Bonds In Genetic Algorithm
title_full Pair Bonds In Genetic Algorithm
title_fullStr Pair Bonds In Genetic Algorithm
title_full_unstemmed Pair Bonds In Genetic Algorithm
title_sort pair bonds in genetic algorithm
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Komputer
publishDate 2015
url http://eprints.usm.my/31889/1/LIM_TING_YEE_%28HJ%29.pdf
_version_ 1747820503416963072