Adapting and enhancing mussels wandering optimization algorithm for supervised training of neural networks
Membangunkan kaedah latihan yang cekap untuk Rangkaian Neural (NN) dalam mencapai kejituan yang tinggi adalah satu cabaran. Tambahan pula, latihan NN masih lagi memerlukan masa yang lama. Algoritma Pengoptimuman Perayauan Kupang (MWO) ialah satu algoritma pengoptimuman metaheuristik yang baru dan...
Saved in:
Main Author: | Abusnaina, Ahmed A. A. |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | http://eprints.usm.my/35580/1/PhD_Thesis_Abusnaina_Adapting_and__Enhancing_MWO_Algorithm_for_Supervised_Trainnig_of_NN_%281%29.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Adapting Artificial Immune Algorithms For University Timetabling
by: Malim , Muhammad Rozi
Published: (2009) -
Optimizing Adaptive Neuro Fuzzy Inference System (Anfis) With Dragonfly Algorithm For Cardiovascular Disease
by: Jinjiri, Wada Mohammed
Published: (2023) -
Metaheuristic-Based Neural Network
Training And Feature Selector For
Intrusion Detection
by: Ghanem, Waheed Ali Hussein Mohammed
Published: (2019) -
Enhanced Micro Genetic
Algorithm-Based Models For
Multi-Objective Optimization
by: Tan, Choo Jun
Published: (2014) -
Adapting And Enhancing Hybrid Computational Methods For RNA
Secondary Structure Prediction
by: Al-Khatib, Ra’ed Mohammad Ali
Published: (2011)