Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode

The transistor was widely employed in integrated circuit design. Nevertheless, the continued scaling the transistor size will affect the device performances. RTD is an efficient high-speed device and has high-frequency operation up to Terahertz (THz) compared to the transistor. It has the potential...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad, Anis Syarliza
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/41322/1/ANIS_SYARLIZA_BINTI_AHMAD.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.41322
record_format uketd_dc
spelling my-usm-ep.413222018-08-14T08:07:32Z Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode 2016 Ahmad, Anis Syarliza TK7800-8360 Electronics The transistor was widely employed in integrated circuit design. Nevertheless, the continued scaling the transistor size will affect the device performances. RTD is an efficient high-speed device and has high-frequency operation up to Terahertz (THz) compared to the transistor. It has the potential to replace the transistor in the ultra-high frequency device applications in the future. Furthermore, RTD is a low power consumption device that works at low power compared to the transistor. Low power consumption needs to consider in integrated circuit design to have highest dynamic performance. This study will be modelled two different material system of RTD, which is GaAs/AlAs and In0.8Ga0.2As/AlAs. The physic-based equation will be simulated in MATLAB and the circuit model will be built up in LT Spice IV.Empirical fitting will be done in MATLAB to match the model to the experimental data. Meanwhile, in LT Spice IV, two methods were employed to simulate the circuit model, which are Table simulation and Polynomial simulation. The empirical fitting had been successfully matched the model to the experimental of GaAs/AlAs and In0.8Ga0.2As/AlAs. Based on results analysis, Table simulation had been successfully simulated I-V characteristics of experimental GaAs/AlAs and In0.8Ga0.2As/AlAs better than Polynomial simulation. 2016 Thesis http://eprints.usm.my/41322/ http://eprints.usm.my/41322/1/ANIS_SYARLIZA_BINTI_AHMAD.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Kejuruteraan Elektrik dan Elektronik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic TK7800-8360 Electronics
spellingShingle TK7800-8360 Electronics
Ahmad, Anis Syarliza
Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode
description The transistor was widely employed in integrated circuit design. Nevertheless, the continued scaling the transistor size will affect the device performances. RTD is an efficient high-speed device and has high-frequency operation up to Terahertz (THz) compared to the transistor. It has the potential to replace the transistor in the ultra-high frequency device applications in the future. Furthermore, RTD is a low power consumption device that works at low power compared to the transistor. Low power consumption needs to consider in integrated circuit design to have highest dynamic performance. This study will be modelled two different material system of RTD, which is GaAs/AlAs and In0.8Ga0.2As/AlAs. The physic-based equation will be simulated in MATLAB and the circuit model will be built up in LT Spice IV.Empirical fitting will be done in MATLAB to match the model to the experimental data. Meanwhile, in LT Spice IV, two methods were employed to simulate the circuit model, which are Table simulation and Polynomial simulation. The empirical fitting had been successfully matched the model to the experimental of GaAs/AlAs and In0.8Ga0.2As/AlAs. Based on results analysis, Table simulation had been successfully simulated I-V characteristics of experimental GaAs/AlAs and In0.8Ga0.2As/AlAs better than Polynomial simulation.
format Thesis
qualification_level Master's degree
author Ahmad, Anis Syarliza
author_facet Ahmad, Anis Syarliza
author_sort Ahmad, Anis Syarliza
title Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode
title_short Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode
title_full Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode
title_fullStr Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode
title_full_unstemmed Quantum Device: Empirical Modelling Of The Resonant Tunneling Diode
title_sort quantum device: empirical modelling of the resonant tunneling diode
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Kejuruteraan Elektrik dan Elektronik
publishDate 2016
url http://eprints.usm.my/41322/1/ANIS_SYARLIZA_BINTI_AHMAD.pdf
_version_ 1747820910854799360