A Framework For Privacy Diagnosis And Preservation In Data Publishing

Privacy preservation in data publishing aims at the publication of data with protecting private information. Although removing direct identifier of individuals seems to protect their anonymity at first glance, private information may be revealed by joining the data to other external data. Privacy p...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Mirakabad, Mohammad Reza Zare
التنسيق: أطروحة
اللغة:English
منشور في: 2010
الموضوعات:
الوصول للمادة أونلاين:http://eprints.usm.my/42061/1/MOHAMMAD_REZA_ZARE_MIRAKABAD.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Privacy preservation in data publishing aims at the publication of data with protecting private information. Although removing direct identifier of individuals seems to protect their anonymity at first glance, private information may be revealed by joining the data to other external data. Privacy preservation addresses this privacy issue by introducing k-anonymity and l-diversity principles. Accordingly, privacy preservation techniques, namely k-anonymization and l-diversification algorithms, transform data (for example by generalization, suppression or fragmentation) to protect identity and sensitive information of individuals respectively.