Enhanced and automated approaches for fish recognition and classification system
Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fi...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-usm-ep.43123 |
---|---|
record_format |
uketd_dc |
spelling |
my-usm-ep.431232018-12-10T07:49:23Z Enhanced and automated approaches for fish recognition and classification system 2011-06 Samma, Ali Salem Ali QA75.5-76.95 Electronic computers. Computer science Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features and high cost of computation. 2011-06 Thesis http://eprints.usm.my/43123/ http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Komputer |
institution |
Universiti Sains Malaysia |
collection |
USM Institutional Repository |
language |
English |
topic |
QA75.5-76.95 Electronic computers Computer science |
spellingShingle |
QA75.5-76.95 Electronic computers Computer science Samma, Ali Salem Ali Enhanced and automated approaches for fish recognition and classification system |
description |
Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi
dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi.
Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features
and high cost of computation. |
format |
Thesis |
qualification_name |
Doctor of Philosophy (PhD.) |
qualification_level |
Doctorate |
author |
Samma, Ali Salem Ali |
author_facet |
Samma, Ali Salem Ali |
author_sort |
Samma, Ali Salem Ali |
title |
Enhanced and automated approaches for fish recognition and classification system
|
title_short |
Enhanced and automated approaches for fish recognition and classification system
|
title_full |
Enhanced and automated approaches for fish recognition and classification system
|
title_fullStr |
Enhanced and automated approaches for fish recognition and classification system
|
title_full_unstemmed |
Enhanced and automated approaches for fish recognition and classification system
|
title_sort |
enhanced and automated approaches for fish recognition and classification system |
granting_institution |
Universiti Sains Malaysia |
granting_department |
Pusat Pengajian Sains Komputer |
publishDate |
2011 |
url |
http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf |
_version_ |
1747821168940810240 |