Enhanced and automated approaches for fish recognition and classification system

Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fi...

Full description

Saved in:
Bibliographic Details
Main Author: Samma, Ali Salem Ali
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.43123
record_format uketd_dc
spelling my-usm-ep.431232018-12-10T07:49:23Z Enhanced and automated approaches for fish recognition and classification system 2011-06 Samma, Ali Salem Ali QA75.5-76.95 Electronic computers. Computer science Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features and high cost of computation. 2011-06 Thesis http://eprints.usm.my/43123/ http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Komputer
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA75.5-76.95 Electronic computers
Computer science
spellingShingle QA75.5-76.95 Electronic computers
Computer science
Samma, Ali Salem Ali
Enhanced and automated approaches for fish recognition and classification system
description Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features and high cost of computation.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Samma, Ali Salem Ali
author_facet Samma, Ali Salem Ali
author_sort Samma, Ali Salem Ali
title Enhanced and automated approaches for fish recognition and classification system
title_short Enhanced and automated approaches for fish recognition and classification system
title_full Enhanced and automated approaches for fish recognition and classification system
title_fullStr Enhanced and automated approaches for fish recognition and classification system
title_full_unstemmed Enhanced and automated approaches for fish recognition and classification system
title_sort enhanced and automated approaches for fish recognition and classification system
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Komputer
publishDate 2011
url http://eprints.usm.my/43123/1/Pages_from_ENHANCED_AND_AUTOMATED.pdf
_version_ 1747821168940810240