The Numerical and Approximate Analytical Solution of Parabolic Partial Differential Equations with Nonlocal Boundary Conditions

Many scientific and engineering problems can be modeled by parabolic partial differential equations with nonlocal boundary conditions. Examples of such problems can be found in chemical diffusion, thermoelasticity, heat conduction processes, nuclear reactor dynamics, inverse problems, control theory...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ghoreishi, Seyed Mohammad
التنسيق: أطروحة
اللغة:English
منشور في: 2011
الموضوعات:
الوصول للمادة أونلاين:http://eprints.usm.my/43488/1/SEYED%20MOHAMMAD%20GHOREISHI.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Many scientific and engineering problems can be modeled by parabolic partial differential equations with nonlocal boundary conditions. Examples of such problems can be found in chemical diffusion, thermoelasticity, heat conduction processes, nuclear reactor dynamics, inverse problems, control theory and so forth. In the last two decades, the development of numerical and approximate analytical techniques to solve these equations has been an important area of research due to the need to better understand the underlying physical phenomena.