In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment

Fifteen strains of Lactobacillus and Bifidobacterium were screened based on their adherence property. Lactobacillus acidophilus BT 1088, L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. bulgaricus FTDC 1311, and L. casei BT 1268 showed higher adherence property compared to other strains s...

Full description

Saved in:
Bibliographic Details
Main Author: Lye, Huey Shi
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/43787/1/Lye%20Huey%20Shi24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.43787
record_format uketd_dc
spelling my-usm-ep.437872019-04-12T05:26:16Z In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment 2013-05 Lye, Huey Shi T11.95-12.5 Industrial directories Fifteen strains of Lactobacillus and Bifidobacterium were screened based on their adherence property. Lactobacillus acidophilus BT 1088, L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. bulgaricus FTDC 1311, and L. casei BT 1268 showed higher adherence property compared to other strains studied and were thus selected for examination on cholesterol removal. Cholesterol removal ability was conducted in vitro, under conditions that mimic the human gastrointestinal tract (pH 8.0). This study provided experimental evidence to strengthen the hypothesis that lactobacilli could remove cholesterol via different mechanisms, namely assimilation of cholesterol during growth, binding of cholesterol to cellular surface, disruption of cholesterol micelle, incorporation of cholesterol into the cellular membrane, deconjugation of bile salt, bile salt hydrolase (BSH) activity, and conversion of cholesterol to coprostanol. Among the mechanisms studied, cholesterol incorporation mechanism was more prominent and the locations of incorporated cholesterol have also been identified. Considering that incorporation of cholesterol into the cellular membrane involves membrane permeability, thus sub-lethal physical treatments such as ultrasound (20-100 W; 1-3 min), electroporation (2.5-7.5 kV cm-1; 3-4 ms), and UV radiation (UVA-UVC, 30-90 J m-2) were applied with the objective to further increase cholesterol removal by Lactobacillus species. 2013-05 Thesis http://eprints.usm.my/43787/ http://eprints.usm.my/43787/1/Lye%20Huey%20Shi24.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Teknologi Industri
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic T11.95-12.5 Industrial directories
spellingShingle T11.95-12.5 Industrial directories
Lye, Huey Shi
In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment
description Fifteen strains of Lactobacillus and Bifidobacterium were screened based on their adherence property. Lactobacillus acidophilus BT 1088, L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. bulgaricus FTDC 1311, and L. casei BT 1268 showed higher adherence property compared to other strains studied and were thus selected for examination on cholesterol removal. Cholesterol removal ability was conducted in vitro, under conditions that mimic the human gastrointestinal tract (pH 8.0). This study provided experimental evidence to strengthen the hypothesis that lactobacilli could remove cholesterol via different mechanisms, namely assimilation of cholesterol during growth, binding of cholesterol to cellular surface, disruption of cholesterol micelle, incorporation of cholesterol into the cellular membrane, deconjugation of bile salt, bile salt hydrolase (BSH) activity, and conversion of cholesterol to coprostanol. Among the mechanisms studied, cholesterol incorporation mechanism was more prominent and the locations of incorporated cholesterol have also been identified. Considering that incorporation of cholesterol into the cellular membrane involves membrane permeability, thus sub-lethal physical treatments such as ultrasound (20-100 W; 1-3 min), electroporation (2.5-7.5 kV cm-1; 3-4 ms), and UV radiation (UVA-UVC, 30-90 J m-2) were applied with the objective to further increase cholesterol removal by Lactobacillus species.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Lye, Huey Shi
author_facet Lye, Huey Shi
author_sort Lye, Huey Shi
title In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment
title_short In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment
title_full In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment
title_fullStr In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment
title_full_unstemmed In Vitro Cholesterol-Lowering Mechanisms Of Selected Lactobacillus And Bifidobacterium Species And Effects Of Physical Treatment
title_sort in vitro cholesterol-lowering mechanisms of selected lactobacillus and bifidobacterium species and effects of physical treatment
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Teknologi Industri
publishDate 2013
url http://eprints.usm.my/43787/1/Lye%20Huey%20Shi24.pdf
_version_ 1747821279560335360