Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
Brain-Computer Interface (BCI) employs brain’s Electroencephalograms (EEG) signals and Event-related potentials (ERP) such as P300 to provide a direct communication between human brain and computer. P300 speller application is a BCI that finds the location of target character using P300 signal...
Saved in:
主要作者: | Aslarzanagh, Seyed Aliakbar Mousavi |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2013
|
主题: | |
在线阅读: | http://eprints.usm.my/43934/1/Seyed%20Aliakbar%20Mousavi%20Aslarzanagh24.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Breast Cancer Classification And Visualisation Using Transposed Deep Neural Network
由: Ting, Fung Fung
出版: (2019) -
Hybridization Of Optimized Support
Vector Machine And Artificial Neural
Network For The Diabetic Retinopathy
Classification Problem
由: Kader, Nur Izzati Ab
出版: (2019) -
Covid-19 Misinformation Classification On Twitter In Malaysia Using A Hybrid Adaptive Neuro-Fuzzy Inferences System (Anfis) And Deep Neural Network (Dnn)
由: Ravichandran, Bhavani Devi
出版: (2023) -
Usability and user experience in touchless hand gesture interfaces with mapping
由: Shanmugam, Mohana
出版: (2023) -
White-Matter Lesion Segmentation In Brain Mri Using Adaptive Trimmed Mean Approach
由: Ong , Kok Haur
出版: (2011)