Forecasting Performance Of Nonlinear And Nonstationary Stock Market Data Using Empirical Mode Decomposition
The stock market indices are typically non-linear and non-stationary with high heteroscedasticity data, which affect the accuracy and validity of the results of traditional forecasting methods. Therefore, this study focuses on decomposition method to solve the problem of non-linearity and non-stati...
محفوظ في:
المؤلف الرئيسي: | Awajan, Ahmad Mohammad Al-Abd |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.usm.my/43955/1/AHMAD%20MOHAMMAD%20AL-%20ABD%20AWAJAN.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Forecasting Stock Market Volatility Using Wavelet Transformation Algorithm Of Garch Model
بواسطة: Audu, Buba
منشور في: (2017) -
Improving Time Series Models Prediction Based On Empirical Mode Decomposition Using Stock Market Data
بواسطة: Hossain, Mohammad Raquibul
منشور في: (2021) -
A neural network modal decomposition mechanism in predicting network traffic
بواسطة: Shi Jinmei
منشور في: (2023) -
Eeg-Based Person Identification Using Multi-Levelwavelet Decomposition With Multi-Objective Flower Pollination Algorithm
بواسطة: Yahya Alyasseri, Zaid Abdi Alkareem
منشور في: (2020) -
Combined empirical mode decomposition and dynamic regression model for forecasting electricity load demand
بواسطة: Akrom, Nuramirah
منشور في: (2015)