HMRF Model For Brain Tumour Segmentation To Estimate The Volume Of MRI And CT Scan Images

Magnetic resonance imaging (MRI) and computed tomography (CT) are two of the most important imaging technologies that enable the doctors to gain a reliable segmentation and estimation of brain tumours. The current study aims to develop a diagnostic method for medical images (MRI and CT) to achieve a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Abdulbaqi, Hayder Saad
التنسيق: أطروحة
اللغة:English
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:http://eprints.usm.my/44248/1/HAYDER%20SAAD%20ABDULBAQI.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Magnetic resonance imaging (MRI) and computed tomography (CT) are two of the most important imaging technologies that enable the doctors to gain a reliable segmentation and estimation of brain tumours. The current study aims to develop a diagnostic method for medical images (MRI and CT) to achieve an accurate and precise segmentation and estimation of brain tumours. The proposed method in the study was applied on datasets had been collected from the Cancer Imaging Archive (TCIA) and Iraqi hospitals. The proposed method based on adapting and developing hidden Markov random field (HMRF) model and threshold method to carry out the segmentation of the brain tumours.