Cfd Study On Mixing Performance In Various Microchannel Geometries

Reaktor mikro ialah sebuah elemen dalam proses intensifikasi di mana, peralatan intensif seperti reactor mikro memerlukan pemahaman tentang ilmu asas supaya ianya boleh digunakan secara menyuluruh. Pencampuran dalam reaktor mikro sangat dipengaruhi oleh tingkah laku hidrodinamik dan dengan itu, meni...

Full description

Saved in:
Bibliographic Details
Main Author: Rahim, Nurul Azrin Abdul
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://eprints.usm.my/44285/1/Cfd%20Study%20On%20Mixing%20Performance%20In%20Various%20Microchannel%20Geometries.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reaktor mikro ialah sebuah elemen dalam proses intensifikasi di mana, peralatan intensif seperti reactor mikro memerlukan pemahaman tentang ilmu asas supaya ianya boleh digunakan secara menyuluruh. Pencampuran dalam reaktor mikro sangat dipengaruhi oleh tingkah laku hidrodinamik dan dengan itu, meningkatkan keperluan untuk mempunyai pandangan mengenainya. Dalam geometri mikro, kesan likat bendalir menjadi dominan, dan aliran mikro biasanya jatuh dalam rejim lamina. Dalam ketiadaan pergolakan, pencampuran bendalir menjadi semata-mata bergantung kepada resapan, yang merupakan proses molekul yang perlahan. Akan tetapi, pencampuran cecair secara cepat dan lengkap adalah sangat penting untuk kebanyakan proses di dalam kejuruteraan kimia, Kualiti pencampuran menentukan prestasi keseluruhan sistem mikrofluidik dan ia adalah masalah yang paling mencabar yang memerlukan penjelajahan lanjut. Dalam kajian ini, bendalir aliran, intensiti pencampuran dan kejatuhan tekanan saluran mikro diselidiki antara bilangan Reynolds (0.1 <Re <120) melalui model tiga dimensi pengkomputeran dinamik bendalir (CFD). Dua aspek saluran mikro, sudut masuk dan jenis alur akan disiasat dalam kajian ini. Keputusannya memberikan beberapa maklumat berkaitan fenomena perpindahan terhadap pencampuran yang terjadi di dalam saluran mikro. Dari segi sudut masuk, saluran berbentuk T menunjukkan pencampuran yang lebih baik daripada saluran Y- dan Anak Panah untuk semua nombor Reynolds yang diuji dan intensiti pencampuran berkurangan dengan peningkatan nombor Reynolds. Dari segi alur, saluran berbentuk T dengan alur ke dalam menunjukkan pencampuran prestasi yang jauh lebih baik berbanding saluran berbentuk T dan saluran berbentuk T dengan alur ke luar. Ini adalah disebabkan alur masuk yang menyebabkan gangguan aliran dan membentuk sekunder aliran atau vorteks, yang membawa kepada pembesaran ruang antara cecair untuk meningkat penyerapan dan masa pertembungan antara cecair yang menyebabkan kecekapan pencampuran yang lebih besar. Sedangkan pencampuran di saluran T dan saluran T dengan alur keluar berkurangan dengan peningkatan nombor reynolds disebabkan oleh tidak adanya gangguan dalam medan aliran, dengan itu berkuranglah kecekapan pencampuran. Keputusannya juga mendedahkan bahawa penurunan tekanan bergantung sepenuhnya pada nombor Reynolds. Semakin tinggi nombor Reynolds, semakin tinggi kejatuhan tekanan semua saluran mikro, dan saluran berbentuk T dengan alur masuk mempunyai tekanan tertinggi kejatuhan berbanding saluran mikro yang lain. _______________________________________________________________________________________________________ Microreactor is an element of Process intensification (PI) where intensified equipment such as a microreactor requires the understanding of fundamental knowledge in order for it to be fully utilised. Mixing in microreactor is greatly influenced by its hydrodynamic behaviour and thus, increases the need to have insights on it. In micro-geometries, the fluid viscous effect becomes dominant, and micro-flow typically falls in the laminar regime. In the absence of turbulence, the fluid mixing becomes purely dependent on diffusion, which is a slow molecular process. On the other hand, in many chemical engineering processes, fast and complete mixing of relevant fluids is of crucial importance. The mixing quality may determine the performance of the whole microfluidic system and it is the most challenging problems which needs further exploration. In this work, fluid flow, mixing intensity (IM) and pressure drop of microchannels were investigated over a range of Reynolds number (0.1<Re<120) via three-dimensional Computational Fluid Dynamics (CFD) model. Two aspects of microchannel, inlet angles and types of grooves will be investigated in this research. The results obtained provide some insight of transport phenomena on mixing that occurred in a microchannel. T-shaped channel showed better mixing than Y- and Arrow-shaped channel at all Reynolds number (Re) tested and mixing intensity decreases with an increase of Re. T-shaped channel with inlet grooves showed far better mixing performance compared to T-shaped channel and T-shaped channel with outlet grooves as the IM for inlet grooves reached more than 0.8 at all Re tested. This is due to the inlet grooves that causes flow disruption and forms secondary flow or vortices, which led to an enlargement of the fluids interface for increased diffusion and residence time thereby causing greater mixing efficiency. T-channel and T-channel with outlet grooves reached IM less than 0.4 for Re>10 at the end of the mixing channel due to the absence of disruption in the flow field, thereby decreasing the mixing efficiency. In terms of time scale evaluation, diffusion is dominant at Re = 0.1 where the residence time is 3s and complete mixing is achieved for all the geometries. Compared to Re = 120 where the residence time is 0.0025s, advection is dominant and complete mixing only achieved in T-shaped channel with inlet grooves. The results also revealed that pressure drop is totally dependent on Re. The higher the Re, the higher the pressure drop for all micro channels, and T-shaped channel with inlet grooves exhibit the highest pressure drop compared to the other microchannels.