Fault Detection And Diagnosis Of Induction Motors Using The Fuzzy Min-Max Neural Network And The Classification And Regression Tree
In this thesis, a novel approach to detecting and diagnosing comprehensive fault conditions of Induction Motors (IMs) using an Fuzzy Min-Max (FMM) neural network and the Classification and Regression Tree (CART) is proposed. The model, known as FMM-CART, exploits the advantages of both FMM and the C...
محفوظ في:
المؤلف الرئيسي: | Seera, Manjeevan Singh |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2012
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.usm.my/44831/1/MANJEEVAN%20SINGH%20SEERA.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Individual And Ensemble Pattern Classification Models Using Enhanced Fuzzy Min-Max Neural Networks
بواسطة: F. M., Mohammed
منشور في: (2014) -
On-Line Fault Diagnostics Of Three Phase Squirrel Cage Induction Motor Based On Motor Current Signature Analysis Method
بواسطة: Hammadi, Khaleel J.
منشور في: (2012) -
Fault detection and diagnosis method for three-phase induction motor
بواسطة: Yousefi, Rozbeh
منشور في: (2018) -
Novel Art-Based Neural Network Models For Pattern Classification, Rule Extraction And Data Regression
بواسطة: Yap , Keem Siah
منشور في: (2010) -
Modern fuzzy min max neural networks for pattern classification
بواسطة: Al Sayaydeh, Osama Nayel Ahmad
منشور في: (2019)