Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant

Low grade iron ore sample obtained from Kuala Lipis, Pahang, Malaysia have been used throughout this study. Currently, the standard on carbothermal process that has been used by practitioners of the local industry is based on the international standard by external researchers using iron ore not from...

Full description

Saved in:
Bibliographic Details
Main Author: Saidin, Hanizam Shah
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/45083/1/Hanizam%20Shah%20Bin%20Saidin24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.45083
record_format uketd_dc
spelling my-usm-ep.450832019-07-26T08:18:20Z Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant 2013-01 Saidin, Hanizam Shah TN1-997 Mining engineering. Metallurgy Low grade iron ore sample obtained from Kuala Lipis, Pahang, Malaysia have been used throughout this study. Currently, the standard on carbothermal process that has been used by practitioners of the local industry is based on the international standard by external researchers using iron ore not from Malaysia. Therefore, the optimization of some significant parameters of Malaysian iron ore carbothermal process needs to be studied. With this regards, among the important variables including effects of temperature, carbon-iron oxide molar ratio, reduction time and amount of flux and binder on the reduction of iron oxide under nonisothermal and isothermal condition. For optimizations purposes, design of experiments (DOE) was utilized by applying the factorial design and response surface methodology. The iron ore sample was characterized by several methods including optical microscopy, XRF, SEM and XRD. XRF analysis indicated that the iron ore sample contained 81.2 wt. % of Fe2O3, 14.7 wt. % SiO2 and 3.5 wt. % Al2O3. XRD pattern confirmed that hematite and quartz were main phases present in the sample. The investigation showed that the compressive strength of roasted iron ore pellets decreased with the increasing of pellet basicity. Roasted pellets with calcium carbonate flux gave the highest compressive strength (7251 N/P), followed by barium carbonate (1410 N/P) and magnesium carbonate (39 N/P). Besides that, at room temperature, the thermal conductivity value for the pellet with magnesium carbonate flux gave the highest value (2.77 WmK-1) followed by pellet with calcium carbonate (2.48 WmK-1) and barium carbonate (2.25 WmK-1). Under nonisothermal conditions, the phase development of direct reduced iron ore samples has been analyzed. The mechanism of reduction was from Fe2O3  Fe3O4  FeO  Fe. From DOE analysis, temperature was the most influential parameter that showed strong interaction with the operating parameters (flux addition and time). The results of the analysis showed that the extent of reduction reached up to 99.9% at 1373 K with 5.0 wt.% flux. Under isothermal conditions, optimum results for carbon-iron oxide molar ratio (C/Fe2O3) were at 1:4.5. The analysis of reduction time showed that the sample took 60 minutes to achieve 92% reduction. Besides that, the optimum amount of flux to obtain a high reduction of 98.9% was 5.0 wt.%. 2013-01 Thesis http://eprints.usm.my/45083/ http://eprints.usm.my/45083/1/Hanizam%20Shah%20Bin%20Saidin24.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Kejuruteraan Bahan & Sumber Mineral
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic TN1-997 Mining engineering
Metallurgy
spellingShingle TN1-997 Mining engineering
Metallurgy
Saidin, Hanizam Shah
Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant
description Low grade iron ore sample obtained from Kuala Lipis, Pahang, Malaysia have been used throughout this study. Currently, the standard on carbothermal process that has been used by practitioners of the local industry is based on the international standard by external researchers using iron ore not from Malaysia. Therefore, the optimization of some significant parameters of Malaysian iron ore carbothermal process needs to be studied. With this regards, among the important variables including effects of temperature, carbon-iron oxide molar ratio, reduction time and amount of flux and binder on the reduction of iron oxide under nonisothermal and isothermal condition. For optimizations purposes, design of experiments (DOE) was utilized by applying the factorial design and response surface methodology. The iron ore sample was characterized by several methods including optical microscopy, XRF, SEM and XRD. XRF analysis indicated that the iron ore sample contained 81.2 wt. % of Fe2O3, 14.7 wt. % SiO2 and 3.5 wt. % Al2O3. XRD pattern confirmed that hematite and quartz were main phases present in the sample. The investigation showed that the compressive strength of roasted iron ore pellets decreased with the increasing of pellet basicity. Roasted pellets with calcium carbonate flux gave the highest compressive strength (7251 N/P), followed by barium carbonate (1410 N/P) and magnesium carbonate (39 N/P). Besides that, at room temperature, the thermal conductivity value for the pellet with magnesium carbonate flux gave the highest value (2.77 WmK-1) followed by pellet with calcium carbonate (2.48 WmK-1) and barium carbonate (2.25 WmK-1). Under nonisothermal conditions, the phase development of direct reduced iron ore samples has been analyzed. The mechanism of reduction was from Fe2O3  Fe3O4  FeO  Fe. From DOE analysis, temperature was the most influential parameter that showed strong interaction with the operating parameters (flux addition and time). The results of the analysis showed that the extent of reduction reached up to 99.9% at 1373 K with 5.0 wt.% flux. Under isothermal conditions, optimum results for carbon-iron oxide molar ratio (C/Fe2O3) were at 1:4.5. The analysis of reduction time showed that the sample took 60 minutes to achieve 92% reduction. Besides that, the optimum amount of flux to obtain a high reduction of 98.9% was 5.0 wt.%.
format Thesis
qualification_level Master's degree
author Saidin, Hanizam Shah
author_facet Saidin, Hanizam Shah
author_sort Saidin, Hanizam Shah
title Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant
title_short Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant
title_full Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant
title_fullStr Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant
title_full_unstemmed Reduction Of Malaysian Iron Ore Pellet By Using Coal As Reductant
title_sort reduction of malaysian iron ore pellet by using coal as reductant
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Kejuruteraan Bahan & Sumber Mineral
publishDate 2013
url http://eprints.usm.my/45083/1/Hanizam%20Shah%20Bin%20Saidin24.pdf
_version_ 1747821453148946432