Accelerated Verilog Simulator Using Application Specific Microprocessor

Logic simulation is an important step in Very Large Scale Integration (VLSI) IC development. Advancement in Hardware Description Language (HDL) has made Verilog a widely adopted language used to model digital circuit and verification test bench. Electronic Design Automation (EDA) vendor provides...

Full description

Saved in:
Bibliographic Details
Main Author: Tan Tze Sin, Tze Sin
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://eprints.usm.my/45788/1/Accelerated%20Verilog%20Simulator%20Using%20Application%20Specific%20Microprocessor.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Logic simulation is an important step in Very Large Scale Integration (VLSI) IC development. Advancement in Hardware Description Language (HDL) has made Verilog a widely adopted language used to model digital circuit and verification test bench. Electronic Design Automation (EDA) vendor provides software and hardwareassisted approaches to carry out simulations. However, software-based simulator is slow whereas hardware-assisted simulator does not offer the same simulation fidelity stipulated in Verilog. In this research project, a hardware-assisted Verilog simulator, VerCPU System, was proposed to address shortcomings in existing platforms. The simulator core is a custom designed application specific microprocessor specifically adapted to handle Verilog simulation. The microprocessor computes Verilog data in its native form while supporting event-driven parallelism directly to achieve speed supremacy. Being a compiled-code simulator, simulation fidelity compliancy is retained to offer the same result and visibility like the software-based solution. A functional system, VerCPU, was developed and prototyped on a Field Programmable Gate Array (FPGA) development board. This system was successfully verified and benchmarked against a software-based compiled-code simulator, i.e. Synopsys VCS®. VerCPU System can already achieve up to 6 times speed superiority with basic speed improvement techniques applied. The simulator had proven to be a viable alternate Verilog simulator to meet future simulation needs.