Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition

In this project, works are focusing on the investigation of the growth and characterization of GaN nanowires synthesized by Ni-catalyzed chemical vapour deposition under various experimental parameters including gallium source and substrate position, growth temperature, ammonia flow rate and reac...

Full description

Saved in:
Bibliographic Details
Main Author: Low, Li Li
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://eprints.usm.my/46251/1/Low%20Li%20Li_HJ.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.46251
record_format uketd_dc
spelling my-usm-ep.462512020-02-18T02:31:26Z Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition 2012-02 Low, Li Li QC1 Physics (General) In this project, works are focusing on the investigation of the growth and characterization of GaN nanowires synthesized by Ni-catalyzed chemical vapour deposition under various experimental parameters including gallium source and substrate position, growth temperature, ammonia flow rate and reaction period. The comparative studies of the influence of these parameters on the morphological, structural and optical characteristics of the synthesized GaN were carried out in this project. The morphology of the synthesized GaN low dimensional wires was dependent on the position of Ga precursor and substrates. The position of Ga precursor and substrates was found to be able to affect the degree of supersaturation of gaseous reactants, which is essential in the growth of GaN wires by vapour-liquid-solid mechanism. Thus two different dimensional aspects of GaN micro- and nanowires were synthesized in this parameter study. The study of growth temperature revealed that 950ºC was the optimal growth temperature for synthesizing uniform, straight and smooth morphology of GaN nanowires with good elemental composition. On the other hand, the morphology and growth mechanism of GaN nanowires were dependent on NH3 flow rate. It was found that straight GaN nanowires were synthesized under low NH3 gas flow rate via vapour-liquid-solid mechanism whereas vermicular-like nanowires were synthesized under high NH3 gas flow rate via the vapour-solid mechanism. Additionally, the study of reaction period revealed that the synthesized GaN nanowires showing a uniform and straight morphology in the early growth process and subsequently transforming to vermicular-shape of nanowires with the increase of reaction period. 2012-02 Thesis http://eprints.usm.my/46251/ http://eprints.usm.my/46251/1/Low%20Li%20Li_HJ.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Fizik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QC1 Physics (General)
spellingShingle QC1 Physics (General)
Low, Li Li
Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition
description In this project, works are focusing on the investigation of the growth and characterization of GaN nanowires synthesized by Ni-catalyzed chemical vapour deposition under various experimental parameters including gallium source and substrate position, growth temperature, ammonia flow rate and reaction period. The comparative studies of the influence of these parameters on the morphological, structural and optical characteristics of the synthesized GaN were carried out in this project. The morphology of the synthesized GaN low dimensional wires was dependent on the position of Ga precursor and substrates. The position of Ga precursor and substrates was found to be able to affect the degree of supersaturation of gaseous reactants, which is essential in the growth of GaN wires by vapour-liquid-solid mechanism. Thus two different dimensional aspects of GaN micro- and nanowires were synthesized in this parameter study. The study of growth temperature revealed that 950ºC was the optimal growth temperature for synthesizing uniform, straight and smooth morphology of GaN nanowires with good elemental composition. On the other hand, the morphology and growth mechanism of GaN nanowires were dependent on NH3 flow rate. It was found that straight GaN nanowires were synthesized under low NH3 gas flow rate via vapour-liquid-solid mechanism whereas vermicular-like nanowires were synthesized under high NH3 gas flow rate via the vapour-solid mechanism. Additionally, the study of reaction period revealed that the synthesized GaN nanowires showing a uniform and straight morphology in the early growth process and subsequently transforming to vermicular-shape of nanowires with the increase of reaction period.
format Thesis
qualification_level Master's degree
author Low, Li Li
author_facet Low, Li Li
author_sort Low, Li Li
title Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition
title_short Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition
title_full Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition
title_fullStr Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition
title_full_unstemmed Fabrication Of Gallium Nitride Nanowires Via Chemical Vapour Deposition
title_sort fabrication of gallium nitride nanowires via chemical vapour deposition
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Fizik
publishDate 2012
url http://eprints.usm.my/46251/1/Low%20Li%20Li_HJ.pdf
_version_ 1747821637525307392