Multi-Objective Hybrid Algorithm For The Classification Of Imbalanced Datasets
Classification of imbalanced datasets remained a significant issue in data mining and machine learning (ML) fields. This research work proposed a new idea based on the optimization for handling the imbalanced datasets. A new self-adaptive hybrid algorithm (CSCMAES) is introduced for optimization....
محفوظ في:
المؤلف الرئيسي: | Saeed, Sana |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.usm.my/48598/1/Sana%20Saeed%20thesis%20Ph.D%20cut.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multi-objective Hybrid Election Algorithm For Random K Satisfiability In Discrete Hopfield Neural Network
بواسطة: Karim, Syed Anayet
منشور في: (2023) -
Eeg-Based Person Identification Using Multi-Levelwavelet Decomposition With Multi-Objective Flower Pollination Algorithm
بواسطة: Yahya Alyasseri, Zaid Abdi Alkareem
منشور في: (2020) -
Algorithms For Multi-Criteria Global Path Planning Of An Unmanned Combat Vehicle
بواسطة: Saw Hin, Saw Veekeong
منشور في: (2020) -
A Hybrid Neural Network - Hidden Markov Model - Fuzzy
Logic Method For Protein Classification
بواسطة: Chew, Martin Wooi Keat
منشور في: (2007) -
An Improved Wavelet Neural Network For Classification And Function Approximation
بواسطة: Ong , Pauline
منشور في: (2011)