Feature Selection Method Based On Hybrid Filter-Metaheuristic Wrapper Approach
High dimension data are often associated with redundant features and there exist many information-theoretic approaches used to select the most relevant set of features and to reduce the feature size. The three most significant approaches are filter, wrap- per, and embedded approaches. Most filter ap...
محفوظ في:
المؤلف الرئيسي: | Jothi, Neesha |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.usm.my/52445/1/Pages%20from%202.%20Final%20Thesis%20Submission.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Short Text Classification Using An Enhanced Term Weighting Scheme And Filter-Wrapper Feature Selection
بواسطة: Alsmadi, Issa Mohammad Ibrahim
منشور في: (2018) -
Metaheuristic-Based Neural Network
Training And Feature Selector For
Intrusion Detection
بواسطة: Ghanem, Waheed Ali Hussein Mohammed
منشور في: (2019) -
Compute Language Interface: A Transparent Wrapper Library For Multi Cpu-Gpu
بواسطة: Ooi, Keng Siang
منشور في: (2013) -
Adapting And Hybrid Ising Harmony Search With Metaheuristic Components For University Course Timetabling
بواسطة: Al-Betar, Mohammed Azmi
منشور في: (2010) -
Enhanced Cuckoo Search Algorithm With Metaheuristic Components For Extracting The Maxima Of The Orientation Distribution Function
بواسطة: Shehab, Mohammad Mohammad Said
منشور في: (2018)