Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features

Predicting protein structures from sequences is a challenging problem. Determining the secondary structures of the protein is an effective approach to infer the complete protein structure. The interactions of local and long-range amino-acid residues in proteins are key contributors in defining the p...

Full description

Saved in:
Bibliographic Details
Main Author: Hazzaa Mahyoub, Fawaz Hameed
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://eprints.usm.my/52692/1/FAWAZ%20HAMEED%20HAZZAA%20MAHYOUB%20-%20TESIS24.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.52692
record_format uketd_dc
spelling my-usm-ep.526922022-05-31T17:13:39Z Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features 2021-10 Hazzaa Mahyoub, Fawaz Hameed QA75.5-76.95 Electronic computers. Computer science Predicting protein structures from sequences is a challenging problem. Determining the secondary structures of the protein is an effective approach to infer the complete protein structure. The interactions of local and long-range amino-acid residues in proteins are key contributors in defining the protein secondary structures. Recent works have focused on capturing local and long-range amino-acid interactions using various predicted protein structural features via an ensemble of deep learning techniques. Nevertheless, determining these structural features is always associated with intensive computing. Moreover, their predictive performance is heavily relied on the quality of the data features resulting from evolutionarily related proteins. This study proposes a method for predicting protein secondary structure by incorporating Feed-Forward Neural Network (FFNN) with bidirectional Long Short-Term Memory (LSTM) networks to capture local and long-range amino-acid interactions. To further improve the prediction accuracy of proteins with few evolutionarily related proteins, additional data features based on the physicochemical properties of amino acids have been proposed. The empirical outcomes indicate that the proposed method in this study shows competitive prediction accuracy compared to Sequence-based Prediction Online Tools for one dimensional structural features (SPOT-1D) and PORTER5. In addition to that, the method outperformed several well-known cutting-edge methods by 2-3 percentagepoint improvement. 2021-10 Thesis http://eprints.usm.my/52692/ http://eprints.usm.my/52692/1/FAWAZ%20HAMEED%20HAZZAA%20MAHYOUB%20-%20TESIS24.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Komputer
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA75.5-76.95 Electronic computers
Computer science
spellingShingle QA75.5-76.95 Electronic computers
Computer science
Hazzaa Mahyoub, Fawaz Hameed
Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
description Predicting protein structures from sequences is a challenging problem. Determining the secondary structures of the protein is an effective approach to infer the complete protein structure. The interactions of local and long-range amino-acid residues in proteins are key contributors in defining the protein secondary structures. Recent works have focused on capturing local and long-range amino-acid interactions using various predicted protein structural features via an ensemble of deep learning techniques. Nevertheless, determining these structural features is always associated with intensive computing. Moreover, their predictive performance is heavily relied on the quality of the data features resulting from evolutionarily related proteins. This study proposes a method for predicting protein secondary structure by incorporating Feed-Forward Neural Network (FFNN) with bidirectional Long Short-Term Memory (LSTM) networks to capture local and long-range amino-acid interactions. To further improve the prediction accuracy of proteins with few evolutionarily related proteins, additional data features based on the physicochemical properties of amino acids have been proposed. The empirical outcomes indicate that the proposed method in this study shows competitive prediction accuracy compared to Sequence-based Prediction Online Tools for one dimensional structural features (SPOT-1D) and PORTER5. In addition to that, the method outperformed several well-known cutting-edge methods by 2-3 percentagepoint improvement.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Hazzaa Mahyoub, Fawaz Hameed
author_facet Hazzaa Mahyoub, Fawaz Hameed
author_sort Hazzaa Mahyoub, Fawaz Hameed
title Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
title_short Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
title_full Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
title_fullStr Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
title_full_unstemmed Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
title_sort protein secondary structure prediction using ensemble neural networks with local and long-range amino-acid features
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Komputer
publishDate 2021
url http://eprints.usm.my/52692/1/FAWAZ%20HAMEED%20HAZZAA%20MAHYOUB%20-%20TESIS24.pdf
_version_ 1747822204699017216