Improved Multi-Verse Optimizer In Text Document Clustering For Topic Extraction
This study aims to propose a suitable TE approach, which provides a better overview of the text documents. To achieve this aim: First, A new feature selection method for TDC, that is, binary multi-verse optimizer algorithm (BMVO) is proposed to eliminate irrelevantly, redundant features and obtain...
Saved in:
主要作者: | Abasi, Ammar Kamal Mousa |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | http://eprints.usm.my/53371/1/AMMAR%20KAMAL%20MOUSA%20ABASI%20-%20TESIS.pdf%20cut.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Feature Selection And Enhanced Krill Herd Algorithm For Text Document Clustering
由: Abualigah, Laith Mohammad Qasim
出版: (2018) -
An Improved K-Nearest Neighbors Approach Using Modified Term Weighting And Similarity Coefficient For Text Classification
由: Kadhim, Ammar Ismael
出版: (2016) -
TIC : A Topic-Based Intelligent Crawler
由: Baghdadi, Hossein Shahsavand
出版: (2011) -
Migration From A Relational Database To A Document-Oriented Database Based On Document-Oriented Data Schema
由: M S, Hamouda Shady
出版: (2020) -
Keyword Competition Approach In
Ranked Document Retrieval
由: Sihombing, Poltak
出版: (2010)