A Multi-objective Evolutionary Algorithm Based On Decomposition For Continuous Optimization Using A Step-function Technique
Multi-objective optimization is an area of study which solves complex real-world problem that involves two or three objectives. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) is one of the algorithms that utilize the concepts of decomposition and neighbourhood to solve multi-...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | http://eprints.usm.my/59252/1/CHUAH%20HOW%20SIANG%20-%20TESIS24.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-objective optimization is an area of study which solves complex real-world problem that involves two or three objectives. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) is one of the algorithms that utilize the concepts of decomposition and neighbourhood to solve multi-objective problems. One of the recent MOEA/D algorithms, i.e., Constant-distance based Neighbours for MOEA/D with Dynamic Weight Vector Adjustment (MOEA/D-AWACD), integrates the concept of a constant-distance neighbourhood and a dynamic weight vector design. This combination creates a flexible neighbourhood that can adapt to the weight vectors changes. However, MOEA/D-AWACD’s performance is dependent on a constant-distance parameter, |
---|