On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2

The Diophantine equation ax+py = z2 where p is prime is widely studied by many mathematicians. Solving equations of this type often include Catalan’s conjecture in the process of proving these equations. Here, we study the non-negative integer solutions for some Diophantine equations of such fami...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Elshahed, Amr Moustafa Mohamed Aly Elsayed
التنسيق: أطروحة
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:http://eprints.usm.my/59441/1/AMR%20MOUSTAFA%20MOHAMED%20ALY%20ELSAYED%20ELSHAHED%20-%20TESIS%20cut.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my-usm-ep.59441
record_format uketd_dc
spelling my-usm-ep.594412023-09-27T01:46:41Z On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2 2022-07 Elshahed, Amr Moustafa Mohamed Aly Elsayed QA1-939 Mathematics The Diophantine equation ax+py = z2 where p is prime is widely studied by many mathematicians. Solving equations of this type often include Catalan’s conjecture in the process of proving these equations. Here, we study the non-negative integer solutions for some Diophantine equations of such family. We will use Mihailescu’s theorem (which is the proof of Catalan’s conjecture) and elementary methods to solve the Diophantine equations 16x −7y = z2, 16x − py = z2 and 64x − py = z2, then we will study a generalization where (4n)x − py = z2 and x, y, z,n are non-negative integers. By using Mihailescu’s theorem and a fundamental approach in the theory of numbers, namely the theory of congruence, we will determine the solution of the Diophantine equations 7x+11y = z2, 13x+17y = z2, 15x+17y = z2 and 2x+257y = z2 where x, y and z are non-negative integers. Also, we will prove that for any non-negative integer n, all non-negative integer solutions of the Diophantine equation 11n8x+11y = z2 are of the form (x, y, z) = (1,n,3(11) n2 ) where n is even, and has no solution when n is odd. Finally, we will concentrate on finding the solutions of the Diophantine equation 3x+ pmny = z2 where y = 1,2 and p > 3 a prime number. 2022-07 Thesis http://eprints.usm.my/59441/ http://eprints.usm.my/59441/1/AMR%20MOUSTAFA%20MOHAMED%20ALY%20ELSAYED%20ELSHAHED%20-%20TESIS%20cut.pdf application/pdf en public masters Universiti Sains Malaysia Pusat Pengajian Sains Matematik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA1-939 Mathematics
spellingShingle QA1-939 Mathematics
Elshahed, Amr Moustafa Mohamed Aly Elsayed
On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2
description The Diophantine equation ax+py = z2 where p is prime is widely studied by many mathematicians. Solving equations of this type often include Catalan’s conjecture in the process of proving these equations. Here, we study the non-negative integer solutions for some Diophantine equations of such family. We will use Mihailescu’s theorem (which is the proof of Catalan’s conjecture) and elementary methods to solve the Diophantine equations 16x −7y = z2, 16x − py = z2 and 64x − py = z2, then we will study a generalization where (4n)x − py = z2 and x, y, z,n are non-negative integers. By using Mihailescu’s theorem and a fundamental approach in the theory of numbers, namely the theory of congruence, we will determine the solution of the Diophantine equations 7x+11y = z2, 13x+17y = z2, 15x+17y = z2 and 2x+257y = z2 where x, y and z are non-negative integers. Also, we will prove that for any non-negative integer n, all non-negative integer solutions of the Diophantine equation 11n8x+11y = z2 are of the form (x, y, z) = (1,n,3(11) n2 ) where n is even, and has no solution when n is odd. Finally, we will concentrate on finding the solutions of the Diophantine equation 3x+ pmny = z2 where y = 1,2 and p > 3 a prime number.
format Thesis
qualification_level Master's degree
author Elshahed, Amr Moustafa Mohamed Aly Elsayed
author_facet Elshahed, Amr Moustafa Mohamed Aly Elsayed
author_sort Elshahed, Amr Moustafa Mohamed Aly Elsayed
title On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2
title_short On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2
title_full On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2
title_fullStr On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2
title_full_unstemmed On The Solvability Of Some Diophantine Equations Of The Form ax+by = z2
title_sort on the solvability of some diophantine equations of the form ax+by = z2
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Matematik
publishDate 2022
url http://eprints.usm.my/59441/1/AMR%20MOUSTAFA%20MOHAMED%20ALY%20ELSAYED%20ELSHAHED%20-%20TESIS%20cut.pdf
_version_ 1783729556668022784