Enhanced Conditional Generative Adversarial Network For Handling Subject Variability In Human Activity Recognition
While splitting datasets, researchers assume that training set is exchangeable with test set and expect good classification performance. This assumption is invalid due to subject variability due to age differences. Classification models trained on activity data from one particular age group such as...
محفوظ في:
المؤلف الرئيسي: | Jimale, Ali Olow |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.usm.my/60094/1/ALI%20OLOW%20JIMALE%20-%20TESIS%20cut.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Enhanced Statistical Modelling For Variable Bit Rate Video Traffic Generated From Scalable Video Codec
بواسطة: Ahmadpour, Sima
منشور في: (2016) -
Enhanced and automated approaches for fish recognition and classification system
بواسطة: Samma, Ali Salem Ali
منشور في: (2011) -
Human Action Recognition With Temporal Dense Sampling Deep Neural Networks
بواسطة: Tan, Kok Seang
منشور في: (2019) -
Analysis Of Feature Reduction Algorithms To Estimate
Human Stress Conditions
بواسطة: Arasu, Darshan Babu
منشور في: (2022) -
Sensorml-Nt: Innovative Cloud Service Sensor Description For Mobile Devices Handling Environmental Issues.
بواسطة: Yazdi, Nazi Tabatabaei
منشور في: (2011)