Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].

Dua jenis masalah rekabentuk lengkung telah ipertimbangkan. Terlebih dahulu kami mempertimbangkan interpolasi satu set titik data ruang yang bertertib dengan satu lengkung licin tertakluk kepada satu set satah kekangan yang berbentuk terhingga atau tak terhingga di mana garis cebis demi cebis yang m...

Full description

Saved in:
Bibliographic Details
Main Author: Kong, Voon Pang
Format: Thesis
Language:English
Published: 2006
Subjects:
Online Access:http://eprints.usm.my/8621/1/CONSTRAINED_INTERPOLATION.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-usm-ep.8621
record_format uketd_dc
spelling my-usm-ep.86212013-07-13T03:56:49Z Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb]. 2006-02 Kong, Voon Pang QA297-299.4 Numerical Analysis Dua jenis masalah rekabentuk lengkung telah ipertimbangkan. Terlebih dahulu kami mempertimbangkan interpolasi satu set titik data ruang yang bertertib dengan satu lengkung licin tertakluk kepada satu set satah kekangan yang berbentuk terhingga atau tak terhingga di mana garis cebis demi cebis yang menyambung titik data secara berturutan tidak bersilang dengan satah kekangan. Two types of curve designing problem have been considered. We first consider the interpolation of a given set of ordered spatial data points by a smooth curve in the presence of a set of finite or infinite constraint planes, where the polyline joining consecutive data points does not intersect with the constraint planes. 2006-02 Thesis http://eprints.usm.my/8621/ http://eprints.usm.my/8621/1/CONSTRAINED_INTERPOLATION.pdf application/pdf en public phd doctoral Universiti Sains Malaysia Pusat Pengajian Sains Matematik
institution Universiti Sains Malaysia
collection USM Institutional Repository
language English
topic QA297-299.4 Numerical Analysis
spellingShingle QA297-299.4 Numerical Analysis
Kong, Voon Pang
Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].
description Dua jenis masalah rekabentuk lengkung telah ipertimbangkan. Terlebih dahulu kami mempertimbangkan interpolasi satu set titik data ruang yang bertertib dengan satu lengkung licin tertakluk kepada satu set satah kekangan yang berbentuk terhingga atau tak terhingga di mana garis cebis demi cebis yang menyambung titik data secara berturutan tidak bersilang dengan satah kekangan. Two types of curve designing problem have been considered. We first consider the interpolation of a given set of ordered spatial data points by a smooth curve in the presence of a set of finite or infinite constraint planes, where the polyline joining consecutive data points does not intersect with the constraint planes.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Kong, Voon Pang
author_facet Kong, Voon Pang
author_sort Kong, Voon Pang
title Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].
title_short Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].
title_full Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].
title_fullStr Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].
title_full_unstemmed Constrained Interpolation And Shape Preserving Approximation By Space Curves [QA297.6. K82 2006 f rb].
title_sort constrained interpolation and shape preserving approximation by space curves [qa297.6. k82 2006 f rb].
granting_institution Universiti Sains Malaysia
granting_department Pusat Pengajian Sains Matematik
publishDate 2006
url http://eprints.usm.my/8621/1/CONSTRAINED_INTERPOLATION.pdf
_version_ 1747819712306216960