Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser

The study focuses on developing and demonstrating fiber laser applications using newly developed thulium-doped fiber (TDF). TDF functions as two different devices in this study. Firstly, TDF is use as gain medium to increase gain significantly at 2 μm wavelength. It specifically functions at that re...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad, Muhammad Taufiq
Format: Thesis
Language:English
English
Published: 2015
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/16831/1/Thulium-Doped%20Fiber%20As%20Gain%20Medium%20And%20Saturable%20Absorber%20For%20Pulsed%20Fiber%20Laser.pdf
http://eprints.utem.edu.my/id/eprint/16831/2/Thulium-doped%20fiber%20as%20gain%20medium%20and%20saturable%20absorber%20for%20pulsed%20fiber%20laser.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.16831
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Zahriladha, Zakaria

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Ahmad, Muhammad Taufiq
Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
description The study focuses on developing and demonstrating fiber laser applications using newly developed thulium-doped fiber (TDF). TDF functions as two different devices in this study. Firstly, TDF is use as gain medium to increase gain significantly at 2 μm wavelength. It specifically functions at that region due to pumped thulium ions reaction force an emission at 2 μm region. The energy transition of 3F4→3H6 can be obtained by pumping TDF with 802 nm and 1552 nm source. Secondly, TDF is use as passive saturable absorber. Passive saturable absorber works to generate self-starting pulse. This happen when TDF absorb lights that going through it until accumulated energy reached saturation level. At saturation level, accumulated energy will discharge and forcing pulse to occur. Instead of TDF, carbon nanotubes (CNT) are also used as saturable absorber in generating pulse. Pulse, or commonly known as ultra-fast pulse are divided into two; Q-switched pulse and mode-locked pulse. Q-switched pulse is a short, high energy pulse from a laser modulating through the intracavity losses and the quality (Q) factor of the ring laser. The microsecond pulse usually occurs in kHz frequency. High pulse energy will force the frequency of the pulse to increase, while the pulses become thinner. Mode-locked pulse is an ultra-short pulses from laser cavity with duration of nanosecond to femtosecond. Due to some circumstances, mode-locked pulse can only appears in a very low power laser cavity. As a result, no stimulated emission will occur since loss is higher than the power. In most cases, mode-locked pulse has a fixed frequency and pulse width depending on the cavity, even the power is changed.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Ahmad, Muhammad Taufiq
author_facet Ahmad, Muhammad Taufiq
author_sort Ahmad, Muhammad Taufiq
title Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
title_short Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
title_full Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
title_fullStr Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
title_full_unstemmed Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
title_sort thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Electronics And Computer Engineering
publishDate 2015
url http://eprints.utem.edu.my/id/eprint/16831/1/Thulium-Doped%20Fiber%20As%20Gain%20Medium%20And%20Saturable%20Absorber%20For%20Pulsed%20Fiber%20Laser.pdf
http://eprints.utem.edu.my/id/eprint/16831/2/Thulium-doped%20fiber%20as%20gain%20medium%20and%20saturable%20absorber%20for%20pulsed%20fiber%20laser.pdf
_version_ 1747833899179835392
spelling my-utem-ep.168312022-06-10T14:45:40Z Thulium-doped fiber as gain medium and saturable absorber for pulsed fiber laser 2015 Ahmad, Muhammad Taufiq T Technology (General) TA Engineering (General). Civil engineering (General) The study focuses on developing and demonstrating fiber laser applications using newly developed thulium-doped fiber (TDF). TDF functions as two different devices in this study. Firstly, TDF is use as gain medium to increase gain significantly at 2 μm wavelength. It specifically functions at that region due to pumped thulium ions reaction force an emission at 2 μm region. The energy transition of 3F4→3H6 can be obtained by pumping TDF with 802 nm and 1552 nm source. Secondly, TDF is use as passive saturable absorber. Passive saturable absorber works to generate self-starting pulse. This happen when TDF absorb lights that going through it until accumulated energy reached saturation level. At saturation level, accumulated energy will discharge and forcing pulse to occur. Instead of TDF, carbon nanotubes (CNT) are also used as saturable absorber in generating pulse. Pulse, or commonly known as ultra-fast pulse are divided into two; Q-switched pulse and mode-locked pulse. Q-switched pulse is a short, high energy pulse from a laser modulating through the intracavity losses and the quality (Q) factor of the ring laser. The microsecond pulse usually occurs in kHz frequency. High pulse energy will force the frequency of the pulse to increase, while the pulses become thinner. Mode-locked pulse is an ultra-short pulses from laser cavity with duration of nanosecond to femtosecond. Due to some circumstances, mode-locked pulse can only appears in a very low power laser cavity. As a result, no stimulated emission will occur since loss is higher than the power. In most cases, mode-locked pulse has a fixed frequency and pulse width depending on the cavity, even the power is changed. 2015 Thesis http://eprints.utem.edu.my/id/eprint/16831/ http://eprints.utem.edu.my/id/eprint/16831/1/Thulium-Doped%20Fiber%20As%20Gain%20Medium%20And%20Saturable%20Absorber%20For%20Pulsed%20Fiber%20Laser.pdf text en public http://eprints.utem.edu.my/id/eprint/16831/2/Thulium-doped%20fiber%20as%20gain%20medium%20and%20saturable%20absorber%20for%20pulsed%20fiber%20laser.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=96180 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Electronics And Computer Engineering Zahriladha, Zakaria 1. 1972. Double Heterostructure Laser Diodes. Us Patent 3,691,476. Agrawal, G. P. 2007. Nonlinear Fiber Optics, Academic Press. 2. Ahmad, F., Harun, S., Nor, R., Zulkepely, N., Ahmad, H. & Shum, P. 2013. A Passively Mode-Locked Erbium-Doped Fiber Laser Based On A Single-Wall Carbon Nanotube Polymer. Chinese Physics Letters, 30, 054210. 3. Ahmad, H., Ismail, M., Hassan, S., Ahmad, F., Zulkifli, M. & Harun, S. 2014. Multiwall Carbon Nanotube Polyvinyl Alcohol-Based Saturable Absorber In Passively Q-Switched Fiber Laser. Applied Optics, 53, 7025-7029. 4. Ahmed, M., Ali, N., Salleh, Z., Rahman, A., Harun, S., Manaf, M. & Arof, H. 2015. Q- Switched Erbium Doped Fiber Laser Based On Single And Multiple Walled Carbon Nanotubes Embedded In Polyethylene Oxide Film As Saturable Absorber. Optics & Laser Technology, 65, 25-28. 5. Ajayan, P. 1999. Nanotubes From Carbon. Chemical Reviews, 99, 1787-1800. 6. Alfano, R. R. & Sriramoju, V. 2011. Method For Picosecond And Femtosecond Laser Tissue Welding. Google Patents. 7. Alvarez-Chavez, J., Offerhaus, H., Nilsson, J., Turner, P., Clarkson, W. & Richardson, D. 2000. High-Energy, High-Power Ytterbium-Doped Q-Switched Fiber Laser. Optics Letters, 25, 37-39. 8. Anyi, C., Haris, H., Harun, S., Ali, N. & Arof, H. 2013. Nanosecond Pulse Fibre Laser Based On Nonlinear Polarisation Rotation Effect. Electronics Letters, 49, 1240-1241. 9. Aplet, L. & Carson, J. 1964. A Faraday Effect Optical Isolator. Applied Optics, 3, 544-545. 10. Bajwa, N., Li, X., Ajayan, P. M. & Vajtai, R. 2008. Mechanisms For Catalytic Cvd Growth Of Multiwalled Carbon Nanotubes. Journal Of Nanoscience And Nanotechnology, 8, 6054-6064. 11. Birnbaum, M., Camargo, M. B. & Stultz, R. D. 1998. Eyesafe Laser System Using Transition Metal-Doped Group Ii-Vi Semiconductor As A Passive Saturable Absorber Q- Switch. Google Patents. 12. Bommeli, F., Degiorgi, L., Wachter, P., Bacsa, W., De Heer, W. & Forro, L. 1997. The Optical Response Of Carbon Nanotubes. Synthetic Metals, 86, 2307-2308. 13. Brackett, C. A. 1990. Dense Wavelength Division Multiplexing Networks: Principles And Applications. Selected Areas In Communications, Ieee Journal On, 8, 948-964. 14. Cao, W., Wang, H., Luo, A., Luo, Z. & Xu, W. 2012. Graphene-Based, 50 Nm Wide-Band Tunable Passively Q-Switched Fiber Laser. Laser Physics Letters, 9, 54. 15. Chen, H.-R., Wang, Y.-G., Tsai, C.-Y., Lin, K.-H., Chang, T.-Y., Tang, J. & Hsieh, W.-F. 2011. High-Power, Passively Mode-Locked Nd: Gdvo< Sub> 4</Sub> Laser Using Single-Walled Carbon Nanotubes As Saturable Absorber. Optics Letters, 36, 1284-1286. 16. Cheng, K., Zhao, S., Yang, K., Li, G., Li, D., Zhang, G., Zhao, B. & Wang, Y. 2011. Diode-Pumped Passively Q-Switched Nd: Lu0. 33y0. 37gd0. 3vo4 Laser Using A Single- Walled Carbon Nanotube Saturable Absorber. Laser Physics Letters, 8, 418. 17. Chou, W. 2014. Application Of Fiber Laser For A Higgs Factory. The European Physical Journal Special Topics, 223, 1237-1242. 18. Chu, W., Li, G., Xie, H., Ni, J., Yao, J., Zeng, B., Zhang, H., Jing, C., Xu, H. & Cheng, Y. 2014. A Self-Induced White Light Seeding Laser In A Femtosecond Laser Filament. Laser Physics Letters, 11, 015301. 19. Colbert, D., Zhang, J., Mcclure, S., Nikolaev, P., Chen, Z., Hafner, J., Owens, D., Kotula, P., Carter, C. & Weaver, J. 1994. Growth And Sintering Of Fullerene Nanotubes. Science, 266, 1218-1222. 20. Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A. & Kalenczuk, R. 2008. Characterization Of Carbon Nanotubes By Raman Spectroscopy. Mater Sci-Poland, 26, 433-441. 21. Damanhuri, S. S. A., Halder, A., Paul, M. C., Ali, S. M. M., Saidin, N., Harun, S. W., Ahmad, H., Das, S., Pal, M. & Bhadra, S. K. 2013. Effects Of Yb/Tm Concentration And Pump Wavelength On The Performance Of Ytterbium-Sensitized Thulium-Doped Fiber Laser. Quantum Electronics, Ieee Journal Of, 49, 95-99. 22. Demaria, A., Stetser, D. & Heynau, H. 1966. Self Mode‐Locking Of Lasers With Saturable Absorbers. Applied Physics Letters, 8, 174-176. 23. Dileo, R. A., Landi, B. J. & Raffaelle, R. P. 2007. Purity Assessment Of Multiwalled Carbon Nanotubes By Raman Spectroscopy. Journal Of Applied Physics, 101, 064307. 24. El-Sherif, A. F. & King, T. A. 2003. High-Energy, High-Brightness Q-Switched Tm< Sup> 3+</Sup>-Doped Fiber Laser Using An Electro-Optic Modulator. Optics Communications, 218, 337-344. 25. Emami, S. D. 2011. Thulium-Doped Fiber Amplifier, Numerical And Experimental Approach Nova Science Publishers, Inc. 26. Esterowitz, L. & Stoneman, R. C. 1990. Room-Temperature, Laser Diode-Pumped, Q- Switched, 2 Micron, Thulium-Doped, Solid State Laser. Google Patents. 27. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M. & Dai, H. 1999. Self-Oriented Regular Arrays Of Carbon Nanotubes And Their Field Emission Properties. Science, 283, 512-514. 28. Fantini, C., Jorio, A., Souza, M., Strano, M., Dresselhaus, M. & Pimenta, M. 2004. Optical Transition Energies For Carbon Nanotubes From Resonant Raman Spectroscopy: Environment And Temperature Effects. Physical Review Letters, 93, 147406. 29. Fried, N. M. & Murray, K. E. 2005. High-Power Thulium Fiber Laser Ablation Of Urinary Tissues At 1.94 Um. Journal Of Endourology, 19, 25-31. 30. Guo, T., Nikolaev, P., Thess, A., Colbert, D. & Smalley, R. 1995. Catalytic Growth Of Single-Walled Manotubes By Laser Vaporization. Chemical Physics Letters, 243, 49-54. 31. Hanna, D., Jauncey, I., Percival, R., Perry, I., Smart, R., Suni, P., Townsend, J. & Tropper, A. 1988. Continuous-Wave Oscillation Of A Monomode Thulium-Doped Fibre Laser. 32. Electronics Letters, 24, 1222-1223. 33. Hargrove, L., Fork, R. & Pollack, M. 1964. Locking Of He–Ne Laser Modes Induced By Synchronous Intracavity Modulation. Applied Physics Letters, 5, 4-5. 34. Hároz, E. H., Rice, W. D., Lu, B. Y., Ghosh, S., Hauge, R. H., Weisman, R. B., Doorn, S. 35. K. & Kono, J. 2010. Enrichment Of Armchair Carbon Nanotubes Via Density Gradient Ultracentrifugation: Raman Spectroscopy Evidence. Acs Nano, 4, 1955-1962. 36. Harun, S., Halder, A., Paul, M. C., Ali, S., Saidin, N., Damanhuri, S., Ahmad, H., Das, S., Pal, M. & Bhadra, S. K. 2012. Ytterbium-Sensitized Thulium-Doped Fiber Laser With A Single-Mode Output Operating At 1 900-Nm Region. Chinese Optics Letters, 10, 101401- 101401. 37. Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P. H., Rozhin, A. G. & Ferrari, A. C. 2009. Nanotube–Polymer Composites For Ultrafast Photonics. Advanced Materials, 21, 3874-3899. 38. Heinz, R. E., Kolb, D. A., Marcovecchio, J. & Slutter, W. S. 1993. Czerny-Turner Monochromator. Google Patents. 39. Hellwarth, R. 1961. Advances In Quantum Electronics. Columbia Press, New York. 40. Hill, K. O. & Meltz, G. 1997. Fiber Bragg Grating Technology Fundamentals And Overview. Journal Of Lightwave Technology, 15, 1263-1276. 41. Hömmerich, U., Seo, J., Bluiett, A., Turner, M., Temple, D., Trivedi, S., Zong, H., Kutcher, S., Wang, C. & Chen, R. 2000. Mid-Infrared Laser Development Based On Transition Metal Doped Cadmium Manganese Telluride. Journal Of Luminescence, 87, 1143-1145. 42. Iijima, S., Brabec, C., Maiti, A. & Bernholc, J. 1996. Structural Flexibility Of Carbon Nanotubes. The Journal Of Chemical Physics, 104, 2089-2092. 43. Injeyan, H., Pierre, R. J. S., Berg, J. G., Hilyard, R. C., Weber, M. E., Wickham, M. G., Senn, R., Harpole, G., Florentino, C. & Groark, F. Diode Array-Pumped Kilowatt Laser Development. Conference On Lasers And Electro-Optics, 1994. Optical Society Of America, Cthc1. 44. Ismail, M. A., Harun, S. W., Zulkepely, N. R., Nor, R. M., Ahmad, F. & Ahmad, H. 2012. Nanosecond Soliton Pulse Generation By Mode-Locked Erbium-Doped Fiber Laser Using Single-Walled Carbon-Nanotube-Based Saturable Absorber. Applied Optics, 51, 8621- 8624. 45. Ivanov, V., Nagy, J., Lambin, P., Lucas, A., Zhang, X., Zhang, X., Bernaerts, D., Van Tendeloo, G., Amelinckx, S. & Van Landuyt, J. 1994. The Study Of Carbon Nanotubules Produced By Catalytic Method. Chemical Physics Letters, 223, 329-335. 46. Jackson, S. D. 2012. Towards High-Power Mid-Infrared Emission From A Fibre Laser. 47. Nature Photonics, 6, 423-431. 48. Jackson, S. D. & King, T. 1998. High-Power Diode-Cladding-Pumped Tm-Doped Silica Fiber Laser. Optics Letters, 23, 1462-1464. 49. Jeong, Y., Sahu, J., Payne, D. & Nilsson, J. Ytterbium-Doped Large-Core Fiber Laser With 1 Kw Continuous-Wave Output Power. Advanced Solid-State Photonics, 2004. Optical Society Of America, Pdp13. 50. Jiang, M., Ma, H., Ren, Z., Chen, X., Long, J., Qi, M., Shen, D., Wang, Y. & Bai, J. 2013. A Graphene Q-Switched Nanosecond Tm-Doped Fiber Laser At 2 Μm. Laser Physics Letters, 10, 055103. 51. Jiang, T., Xu, Y., Tian, Q., Liu, L., Kang, Z., Yang, R., Qin, G. & Qin, W. 2012. Passively Q-Switching Induced By Gold Nanocrystals. Applied Physics Letters, 101, 151122. 52. Jishi, R., Venkataraman, L., Dresselhaus, M. & Dresselhaus, G. 1993. Phonon Modes In Carbon Nanotubules. Chemical Physics Letters, 209, 77-82. 53. Jorio, A., Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Resonance Raman Scattering: Experimental Observations Of The Radial Breathing Mode. Raman Spectroscopy In Graphene Related Systems, 199-222. 54. Jusoh, Z., Ahmad, H., Harun, S. W., Halder, A., Paul, M., Pal, M. & Bhadra, S. K. 2014. Passively Q-Switched Thulium Ytterbium Co-Doped Fiber Laser Using A Multi-Walled Carbon Nanotube Polymer Composite Based Saturable Absorber. 55. Kaplan, A. M., Agrawal, G. P. & Maywar, D. N. 2010. Optical Square-Wave Clock Generation Based On An All-Optical Flip-Flop. Photonics Technology Letters, Ieee, 22, 489-491. 56. Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D., Delamesiere, M., Draper, S. & Zandbergen, H. 1994. Resonance Raman And Infrared Spectroscopy Of Carbon Nanotubes. Chemical Physics Letters, 221, 53-58. 57. Kelleher, E., Travers, J., Sun, Z., Rozhin, A., Ferrari, A., Popov, S. & Taylor, J. 2009. Nanosecond-Pulse Fiber Lasers Mode-Locked With Nanotubes. Applied Physics Letters, 95, 111108. 58. Keller, U. 2004. Ultrafast Solid-State Lasers. Progress In Optics, 46, 1-116. 59. Kivistö, S., Hakulinen, T., Guina, M., Rößner, K., Forchel, A. & Okhotnikov, O. 2 Watt 2 Μm Tm/Ho Fiber Laser System Passively Q-Switched By Antimonide Semiconductor Saturable Absorber. Photonics Europe, 2008a. International Society For Optics And Photonics, 69980q-69980q-8. 60. Kivistö, S., Koskinen, R., Paajaste, J., Jackson, S. D., Guina, M. & Okhotnikov, O. G. 2008b. Passively Q-Switched Tm3+, Ho3+-Doped Silica Fiber Laser Using A Highly Nonlinear Saturable Absorber And Dynamic Gain Pulse Compression. Optics Express, 16, 22058-22063. 61. Koechner, W. 2006. Solid-State Laser Engineering, Springer. 62. Kürti, J., Zólyomi, V., Grüneis, A. & Kuzmany, H. 2002. Double Resonant Raman Phenomena Enhanced By Van Hove Singularities In Single-Wall Carbon Nanotubes. Physical Review B, 65, 165433. 63. Li, J., Hudson, D. D., Liu, Y. & Jackson, S. D. 2012. Efficient 2.87 Μm Fiber Laser Passively Switched Using A Semiconductor Saturable Absorber Mirror. Optics Letters, 37, 3747-3749. 64. Limpert, J., Höfer, S., Liem, A., Zellmer, H., Tünnermann, A., Knoke, S. & Voelckel, H. 2002. 100-W Average-Power, High-Energy Nanosecond Fiber Amplifier. Applied Physics B, 75, 477-479. 65. Limpert, J., Liem, A., Reich, M., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Broeng, J., Petersson, A. & Jakobsen, C. 2004. Low-Nonlinearity Single-Transverse-Mode Ytterbium-Doped Photonic Crystal Fiber Amplifier. Optics Express, 12, 1313-1319. 66. Luo, Z.-C., Luo, A.-P. & Xu, W.-C. 2011. Tunable And Switchable Multiwavelength Passively Mode-Locked Fiber Laser Based On Sesam And Inline Birefringence Comb Filter. Photonics Journal, Ieee, 3, 64-70. 67. Mallick, B., Lakshmanna, A., Radhalakshmi, V. & Umapathy, S. 2008. Design And Development Of Stimulated Raman Spectroscopy Apparatus Using A Femtosecond Laser System. Current Science, 95, 1551-1559. 68. Malmström, M., Margulis, W., Tarasenko, O., Pasiskevicius, V. & Laurell, F. 2012. Soliton Generation From An Actively Mode-Locked Fiber Laser Incorporating An Electro- Optic Fiber Modulator. Optics Express, 20, 2905-2910. 69. Maultzsch, J., Pomraenke, R., Reich, S., Chang, E., Prezzi, D., Ruini, A., Molinari, E., Strano, M., Thomsen, C. & Lienau, C. 2005. Exciton Binding Energies In Carbon Nanotubes From Two-Photon Photoluminescence. Physical Review B, 72, 241402. 70. Mcclung, F. & Hellwarth, R. 1962. Giant Optical Pulsations From Ruby. Journal Of Applied Physics, 33, 828-829. 71. Mocker, H. W. & Collins, R. 1965. Mode Competition And Self‐Locking Effects In Aq‐ Switched Ruby Laser. Applied Physics Letters, 7, 270-273. 72. Nakamura, S. 1998. The Roles Of Structural Imperfections In Ingan-Based Blue Light- Emitting Diodes And Laser Diodes. Science, 281, 956-961. 73. Nelson, L., Jones, D., Tamura, K., Haus, H. & Ippen, E. 1997. Ultrashort-Pulse Fiber Ring Lasers. Applied Physics B: Lasers And Optics, 65, 277-294. 74. O’connell, M. J., Sivaram, S. & Doorn, S. K. 2004. Near-Infrared Resonance Raman Excitation Profile Studies Of Single-Walled Carbon Nanotube Intertube Interactions: A Direct Comparison Of Bundled And Individually Dispersed Hipco Nanotubes. Physical Review B, 69, 235415. 75. Osswald, S., Flahaut, E., Ye, H. & Gogotsi, Y. 2005. Elimination Of D-Band In Raman Spectra Of Double-Wall Carbon Nanotubes By Oxidation. Chemical Physics Letters, 402, 422-427. 76. Othonos, A. & Kalli, K. 1999. Fiber Bragg Gratings: Fundamentals And Applications In Telecommunications And Sensing, Artech House Boston. 77. Pang, K., Liu, S.-B., Wei, H.-B., Zhuo, J., Li, M.-L., Xia, S.-J. & Sun, X.-W. 2014. Two- 78. Micron Thulium Laser Resection Of The Distal Ureter And Bladder Cuff During Nephroureterectomy For Upper Urinary Tract Urothelial Carcinoma. Lasers In Medical Science, 29, 621-627. 79. Paschotta, R., Nilsson, J., Tropper, A. C. & Hanna, D. C. 1997. Ytterbium-Doped Fiber Amplifiers. Ieee Journal Of Quantum Electronics, 33, 1049-1056. 80. Peng, X., Jordens, B., Hooper, A., Baird, B., Ren, W., Xu, L. & Sun, L. Generation Of Programmable Temporal Pulse Shape And Applications In Micromachining. Spie Lase: Lasers And Applications In Science And Engineering, 2009. International Society For Optics And Photonics, 719324-719324-9. 81. Petros, M., Singh, U., Yu, J., Kavaya, M. & Koch, G. 2-Micron Coherent Doppler Lidar Instrument Advancements For Tropospheric Wind Measurement. Spie Remote Sensing, 2014. International Society For Optics And Photonics, 92460a-92460a-6. 82. Pimenta, M., Marucci, A., Empedocles, S., Bawendi, M., Hanlon, E., Rao, A., Eklund, P., Smalley, R., Dresselhaus, G. & Dresselhaus, M. 1998. Raman Modes Of Metallic Carbon Nanotubes. Physical Review B, 58, R16016. 83. Piscanec, S., Lazzeri, M., Mauri, F. & Ferrari, A. 2007. Optical Phonons Of Graphene And Nanotubes. The European Physical Journal-Special Topics, 148, 159-170. 84. Popa, D., Sun, Z., Hasan, T., Torrisi, F., Wang, F. & Ferrari, A. 2010. Graphene Q- Switched, Tunable Fiber Laser. Arxiv Preprint Arxiv:1011.0115. 85. Quimby, R. S. 2006. Photonics And Lasers: An Introduction, John Wiley & Sons. 86. Ramadurai, K., Cromer, C. L., Lewis, L. A., Hurst, K. E., Dillon, A. C., Mahajan, R. L. & Lehman, J. H. 2008. High-Performance Carbon Nanotube Coatings For High-Power Laser Radiometry. Journal Of Applied Physics, 103, 013103. 87. Rao, A., Richter, E., Bandow, S., Chase, B., Eklund, P., Williams, K., Fang, S., Subbaswamy, K., Menon, M. & Thess, A. 1997. Diameter-Selective Raman Scattering From Vibrational Modes In Carbon Nanotubes. Science, 275, 187-191. 88. Saidin, N., Zen, D. I., Ahmad, F., Haris, H., Ahmad, M. T., Latiff, A. A., Ahmad, H., Dimyati, K. & Harun, S. W. 2014a. Q-Switched Thulium-Doped Fibre Laser Operating At 89. 1900 Nm Using Multi-Walled Carbon Nanotubes Saturable Absorber. The Journal Of Engineering, 1. 90. Saidin, N., Zen, D. I. M., Ahmad, F., Damanhuri, S. S. A., Ahmad, H., Dimyati, K. & Harun, S. W. 2014b. Q-Switched Thulium-Doped Fibre Laser Operating At 1900 Nm Using Multi-Layered Graphene Based Saturable Absorber. Iet Optoelectronics, 8, 155-160. 91. Saini, S. S., Merritt, S., Konoplev, O., Hu, Y., Luciani, V., Leavitt, R., Heim, P., Bowler, 92. D. & Dagenais, M. 150 Mw High-Power Angled-Stripe Superluminescent Diode At 1550 Nm. Conference On Lasers And Electro-Optics, 2004. Optical Society Of America, Cmj2. 93. Scholle, K., Lamrini, S., Koopmann, P. & Fuhrberg, P. 2010. 2 µm Laser Sources And Their Possible Applications. 94. Sharma, U., Kim, C.-S. & Kang, J. U. 2004. Highly Stable Tunable Dual-Wavelength Q- Switched Fiber Laser For Dial Applications. Photonics Technology Letters, Ieee, 16, 1277- 1279. 95. Snitzer, E. 1963. ‘Some Properties Of Fiber Optics And Lasers, Baltimore, Spartan Books. 96. Sobon, G., Sotor, J. & Abramski, K. M. 2012. Passive Harmonic Mode-Locking In Er- Doped Fiber Laser Based On Graphene Saturable Absorber With Repetition Rates Scalable To 2.22 Ghz. Applied Physics Letters, 100, 161109-161109-4. 97. Solodyankin, M. A., Obraztsova, E. D., Lobach, A. S., Chernov, A. I., Tausenev, A. V., Konov, V. I. & Dianov, E. M. 2008. Mode-Locked 1.93 Μm Thulium Fiber Laser With A Carbon Nanotube Absorber. Optics Letters, 33, 1336-1338. 98. Souza Filho, A., Jorio, A., Samsonidze, G. G., Dresselhaus, G., Dresselhaus, M., Swan, A. K., Ünlü, M., Goldberg, B., Saito, R. & Hafner, J. 2002. Probing The Electronic Trigonal Warping Effect In Individual Single-Wall Carbon Nanotubes Using Phonon Spectra. 99. Chemical Physics Letters, 354, 62-68. 100. Sun, Z., Hasan, T., Wang, F., Rozhin, A. G., White, I. H. & Ferrari, A. C. 2010. Ultrafast Stretched-Pulse Fiber Laser Mode-Locked By Carbon Nanotubes. Nano Research, 3, 404- 411. 101. Tamura, K., Ippen, E., Haus, H. & Nelson, L. 1993. 77-Fs Pulse Generation From A Stretched-Pulse Mode-Locked All-Fiber Ring Laser. Optics Letters, 18, 1080-1082. 102. Tan, W., Su, C., Knize, R., Xie, G., Li, L. & Tang, D. 2010. Mode Locking Of Ceramic Nd: Yttrium Aluminum Garnet With Graphene As A Saturable Absorber. Applied Physics Letters, 96, 031106. 103. Tanaka, K., Sato, T., Yamabe, T., Okahara, K., Uchida, K., Yumura, M., Niino, H., Ohshima, S., Kuriki, Y. & Yase, K. 1994. Electronic Properties Of Carbon Nanotube. Chemical Physics Letters, 223, 65-68. 104. Tao, M., Huang, Q., Yu, T., Yang, P., Chen, W. & Ye, X. 2013. A Highly Efficient 57 Pm Tm-Doped Fiber Laser With Two Multimode Fiber Bragg Gratings. Laser Physics, 23, 075111. 105. Telg, H., Maultzsch, J., Reich, S., Hennrich, F. & Thomsen, C. 2004. Chirality Distribution And Transition Energies Of Carbon Nanotubes. Physical Review Letters, 93, 177401. 106. Telg, H., Thomsen, C. & Maultzsch, J. 2010. Raman Intensities Of The Radial-Breathing Mode In Carbon Nanotubes: The Exciton-Phonon Coupling As A Function Of (N1, N2). Journal Of Nanophotonics, 4, 041660-041660-12. 107. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. 108. G. & Rinzler, A. G. 1996. Crystalline Ropes Of Metallic Carbon Nanotubes. Science-Aaas- Weekly Paper Edition, 273, 483-487. 109. Tittel, F. K., Richter, D. & Fried, A. 2003. Mid-Infrared Laser Applications In Spectroscopy. Solid-State Mid-Infrared Laser Sources. Springer. 110. Tiu, Z. C., Ahmad, F., Tan, S. J., Zarei, A., Ahmad, H. & Harun, S. W. 2014. Multi- Wavelength Q-Switched Erbium-Doped Fiber Laser With Photonic Crystal Fiber And Multi-Walled Carbon Nanotubes. Journal Of Modern Optics, 1-7. 111. Tsai, T.-Y., Fang, Y.-C. & Hung, S.-H. 2010. Passively Q-Switched Erbium All-Fiber Lasers By Use Of Thulium-Doped Saturable-Absorber Fibers. Optics Express, 18, 10049- 10054. 112. Verdeyen, J. T. 1989. Laser Electronics. Laser Electronics/2nd Edition/, By Jt Verdeyen, Englewood Cliffs, Nj, Prentice Hall, 1989, 640 P., 1. 113. Villegas, I., Cuadrado-Laborde, C., Abreu-Afonso, J., Diez, A., Cruz, J., Martínez-Gámez, 114. M. & Andrés, M. 2011. Mode-Locked Yb-Doped All-Fiber Laser Based On In-Fiber Acoustooptic Modulation. Laser Physics Letters, 8, 227. 115. Wakabayashi, T., Kohno, M., Achiba, Y., Shiromaru, H., Momose, T., Shida, T., Naemura, 116. K. & Tobe, Y. 1997. Photoelectron Spectroscopy Of Cn (-) Produced From Laser Ablated Dehydroannulene Derivatives Having Carbon Ring Size Of N= 12, 16, 18, 20, And 24. Journal Of Chemical Physics, 107, 4783-4787. 117. Wang, F., Rozhin, A., Sun, Z., Scardaci, V., Penty, R., White, I. & Ferrari, A. 2008. Fabrication, Characterization And Mode Locking Application Of Single-Walled Carbon Nanotube/Polymer Composite Saturable Absorbers. International Journal Of Material Forming, 1, 107-112. 118. Wang, Q., Chen, T., Li, M., Zhang, B., Heberle, A. & Chen, K. Passively Q-Switched Thulium-Doped Fiber Laser By Graphene Saturable Absorber. Opto-Electronics And Communications Conference (Oecc), 2012 17th, 2012. Ieee, 55-56. 119. Wang, Y. & Cui, Y. 2004. Fiber Laser Technology. Journal Of Electron Devices, 2, 030. 120. Westermeier, C., Cernescu, A., Amarie, S., Liewald, C., Keilmann, F. & Nickel, B. 2014. Sub-Micron Phase Coexistence In Small-Molecule Organic Thin Films Revealed By Infrared Nano-Imaging. Nature Communications, 5. 121. Wu, J., Pisula, W. & Müllen, K. 2007. Graphenes As Potential Material For Electronics. 122. Chemical Reviews, 107, 718-747. 123. Xu, J., Wu, S., Liu, J., Wang, Q., Yang, Q.-H. & Wang, P. 2012. Nanosecond-Pulsed Erbium-Doped Fiber Lasers With Graphene Saturable Absorber. Optics Communications, 285, 4466-4469. 124. Zayhowski, J. & Dill, C. 1995. Coupled-Cavity Electro-Optically Q-Switched Nd: Yvo 4 Microchip Lasers. Optics Letters, 20, 716-718. 125. Zayhowski, J., Ochoa, J. & Mooradian, A. 1989. Gain-Switched Pulsed Operation Of Microchip Lasers. Optics Letters, 14, 1318-1320. 126. Zhang, L., Wang, Y., Yu, H., Sun, L., Hou, W., Lin, X. & Li, J. 2011. Passive Mode- Locked Nd: Yvo4 Laser Using A Multi-Walled Carbon Nanotube Saturable Absorber. Laser Physics, 21, 1382-1386. 127. Zhong, Y., Zhang, Z. & Tao, X. 2010. Passively Mode-Locked Fiber Laser Based On Nonlinear Optical Loop Mirror With Semiconductor Optical Amplifier. Laser Physics, 20, 1756-1759.