Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna

Metamaterial is a type of artificial structure that is not found in the nature. This structure has become an interest among many due to its extraordinary response to electromagnetic waves. The split ring resonator is an example of a metamaterial structure, which has the potential to improve the per...

Full description

Saved in:
Bibliographic Details
Main Author: Hassan, Nornikman
Format: Thesis
Language:English
English
Published: 2016
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/18610/1/Enhancement%20Performance%20Of%20Split%20Ring%20Resonator%20Structure%20On%20Microstrip%20Patch%20Antenna%2024%20Pages.pdf
http://eprints.utem.edu.my/id/eprint/18610/2/Enhancement%20Performance%20Of%20Split%20Ring%20Resonator%20Structure%20On%20Microstrip%20Patch%20Antenna.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.18610
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Hassan, Nornikman
Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna
description Metamaterial is a type of artificial structure that is not found in the nature. This structure has become an interest among many due to its extraordinary response to electromagnetic waves. The split ring resonator is an example of a metamaterial structure, which has the potential to improve the performances of components in microwaves without changing the materials or with additional radiators. First, the possibility to reduce the size of patch antenna while maintaining the acceptable performance at 2.4 GHz with various split ring resonator configurations studied. Next, the ability to produce multi bandwidth performance for Minkowski Island antenna with Minkowski Island split ring resonator had performed. The antenna had designed and simulated with Microwave CST software. Then, the proposed antenna had been fabricated and measured. Meanwhile, the Minkowski Island split ring resonator possessed the ability to reduce the overall physical size of Minkowski patch antenna up to 75.6 % compare with basic rectangular antenna. Then, the Minkowski Island split ring resonator could create multiband resonant frequency at 2.4 GHz, 3.5 GHz, and 5.2 GHz for the Minkowski Island antenna with return loss of - 21.945 dB, - 17.154 dB and - 16.536 dB with gain of 0.874 dB, 1.410 dB and 2.940 dB, respectively. Besides, the resonant frequency could also be controlled by using different combinations size and location of Minkowski Island split ring resonators. The overall size of the antenna still could be maintained although additional split ring resonators were used. Therefore, the multiband system with compact design can be realized to improve the mobility of wireless communication system devices.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Hassan, Nornikman
author_facet Hassan, Nornikman
author_sort Hassan, Nornikman
title Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna
title_short Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna
title_full Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna
title_fullStr Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna
title_full_unstemmed Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna
title_sort enhancement performance of split ring resonator structure on microstrip patch antenna
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Electronic and Computer Engineering
publishDate 2016
url http://eprints.utem.edu.my/id/eprint/18610/1/Enhancement%20Performance%20Of%20Split%20Ring%20Resonator%20Structure%20On%20Microstrip%20Patch%20Antenna%2024%20Pages.pdf
http://eprints.utem.edu.my/id/eprint/18610/2/Enhancement%20Performance%20Of%20Split%20Ring%20Resonator%20Structure%20On%20Microstrip%20Patch%20Antenna.pdf
_version_ 1747833942613950464
spelling my-utem-ep.186102021-10-10T22:34:00Z Enhancement Performance Of Split Ring Resonator Structure On Microstrip Patch Antenna 2016 Hassan, Nornikman T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Metamaterial is a type of artificial structure that is not found in the nature. This structure has become an interest among many due to its extraordinary response to electromagnetic waves. The split ring resonator is an example of a metamaterial structure, which has the potential to improve the performances of components in microwaves without changing the materials or with additional radiators. First, the possibility to reduce the size of patch antenna while maintaining the acceptable performance at 2.4 GHz with various split ring resonator configurations studied. Next, the ability to produce multi bandwidth performance for Minkowski Island antenna with Minkowski Island split ring resonator had performed. The antenna had designed and simulated with Microwave CST software. Then, the proposed antenna had been fabricated and measured. Meanwhile, the Minkowski Island split ring resonator possessed the ability to reduce the overall physical size of Minkowski patch antenna up to 75.6 % compare with basic rectangular antenna. Then, the Minkowski Island split ring resonator could create multiband resonant frequency at 2.4 GHz, 3.5 GHz, and 5.2 GHz for the Minkowski Island antenna with return loss of - 21.945 dB, - 17.154 dB and - 16.536 dB with gain of 0.874 dB, 1.410 dB and 2.940 dB, respectively. Besides, the resonant frequency could also be controlled by using different combinations size and location of Minkowski Island split ring resonators. The overall size of the antenna still could be maintained although additional split ring resonators were used. Therefore, the multiband system with compact design can be realized to improve the mobility of wireless communication system devices. UTeM 2016 Thesis http://eprints.utem.edu.my/id/eprint/18610/ http://eprints.utem.edu.my/id/eprint/18610/1/Enhancement%20Performance%20Of%20Split%20Ring%20Resonator%20Structure%20On%20Microstrip%20Patch%20Antenna%2024%20Pages.pdf text en public http://eprints.utem.edu.my/id/eprint/18610/2/Enhancement%20Performance%20Of%20Split%20Ring%20Resonator%20Structure%20On%20Microstrip%20Patch%20Antenna.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=100381 phd doctoral Universiti Teknikal Malaysia Melaka Faculty of Electronic and Computer Engineering 1. Abdalla, M. A., and Zihrun, H., 2012. On The Study of Development of X Band Metamaterial Radar Absorber, Advanced Electromagnetics, Vol. 1 (3), pp. 94 – 98. 2. Abu, M., Rahim, M.K.A., Ayop, O., Zubir, F., 2011. Design of Triple-Band Dipole-Type Antenna with Dual-Band Artificial Magnetic Conductor Structure, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 1514 – 1517. 3. Ahmad, S., Saidin, N. S., Isa, C. M. C., 2012. Development of Embroidered Sierpinski Carpet Antenna, 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp. 123 – 127. 4. Ajey A., Shambavi and. Alex, Z. C, 2012. Design and Analysis of Fractal Antenna for UWB Applications, 2012 IEEE Students’ Conference on Electrical Electronics and Computer Science (SCEECS), pp. 1 – 4. 5. Anas, Y. A., Wan Khairuddin, W. A., Tharek, A. R., and Farid, N. A., 2005. Microwave and Reflection Properties of Palm Shell Carbon Polyester Conductive Composite Absorber. Jurnal Teknologi, Vol. 42 (A), pp. 59 - 74. 6. Ancy P. V., Sukla, S. B., Prakash A. K., Mukundan K. K., 2014. Multiband Fractal Antenna for Wireless Communication, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE), Vol. 3 (2), pp. 7553-7558. 7. Anderson, J., Johnson, K., Satterlee, C., Lynch, A., Braaten, B. D., 2011. A Reduced Frequency Printed Quasi-Yagi Antenna Symmetrically Loaded with Meander Open Complementary Split Ring Resonator (MOCSRR) Elements, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 270 – 273. 8. Anzai, H., M. Saikawa, Y. Naito, and T. Mizumoto, 1995. The Equivalent Representation of Pyramidal Absorbers at its Application to the Analysis of Electromagnetic Wave Absorber's Characteristic, IEEE International Symposium on Electromagnetic Compatibility, pp. 563 – 567. 9. Aznar, F., Bonache, J., Martin, F., Ozbay, E., Alici, K. B., Bilotti, F., Tricarico, S., Vegni, L., Baena, J. D., Jelinek, L., Marques, R., 2008. Miniaturization and Characterization Of Metamaterial Resonant Particles, 38th European Microwave Conference (EuMC 2008), pp.269 – 272. 10. Baena, J. D., Marques, R., Medina, F., and Martel, J., 2004. Artificial Magnetic Metamaterial Design by using Spiral Resonators, Physics Review B, Vol. 69, pp. 1 – 5. 11. Baena J. D., Bonache, J., Martín, F., Marqués, R., Falcone, F., Lopetegi, T., Laso, M. A. G.,García–García, J., Portillo, M. F., and Sorolla, M., 2005. Equivalent-circuit Models for Split-ring Resonators and Complementary Split-ring Resonators Coupled to Planar Transmission Lines, IEEE Transactions on Microwave Theory and Techniques, Vol. 53, pp. 1451 – 1461. 12. Barbuto, M., Monti, A., Bilotti, F., Toscano, A., 2013. Design of a Non-Foster Actively Loaded SRR and Application in Metamaterial-Inspired Components, IEEE Transactions on Antennas and Propagation, Vol. 61 (3), pp. 1219 – 1227. 13. Bekefi, G. and Barrett, A. H., 1987. Modeling of Fractal Element Antennae (FEA), Electromagnetic Vibrations, Waves, and Radiation. pp. 418 – 420. 14. Beruete, M., Aznabet, M., Navarro-Cía, M., El Mrabet, O., Falcone, F., Aknin, N., Essaaidi, M. and Sorolla M., 2009. Electroinductive waves role in left-handed stacked complementary split rings resonators, Optic Express, Vol. 17 (3), pp 1274 – 1281. 15. Bilotti, F., Toscano, A., Boratay A. K., Ozbay, E., Vegni, L., Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions, IEEE Transactions on Electromagnetic Compatibility, Vol. 53 (1), pp. 63 – 72. 16. Bird, T. S., Definition and Misuse of Return Loss, 2009. IEEE Antennas and Propagation Magazine, Vol. 51 (2), pp. 166 – 167. 17. Bose, J., 1898. On the Rotation of Plane of Polarisation of Electric Waves by a Twisted Structure, Proceedings of The Royal Society of London, Vol. 63, pp. 146 – 152. 18. Bingham, C. M., Tao, H., Liu, X., Averitt, R. D. Zhang, X. and Padilla W. J., 2008. Planar Wallpaper Group Metamaterials for Novel Terahertz Applications, Optics Express, Vol. 16(23), pp. 18565 – 18575. 19. Buell, K,. Mosallaei, H., and Sarabandi, K., 2006. A Substrate for Small Patch Antennas Providing Tunable Miniaturization Factors, IEEE Transactions on Microwave Theory and Techniques, Vol. 54, pp. 135–146. 20. Chao, W., Zhang, B., Aijun, L., Yu, T., Guo, D., Wei, Y., 2012. Gain Enhancement for Broadband Periodic Endfire Antenna by Using Split-Ring Resonator Structures, IEEE Transactions on Antennas and Propagation, Vol. 60, issue 7, pp. 3513 – 3516 21. Chen, L., Li., J., Pan., H., Yi, X. Q., 2010. An Efficiency-Improved Power Amplifier using Split-Ring Resonator Defected Ground Structure, 2010 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 1421 – 1423. 22. Choi, J., Seo, C., 2008. Broadband VCO using Electronically Controlled Metamaterial Transmission Line Based on Varactor-Loaded Split-Ring Resonator, Microwave and 23. Optical Technology Letters, Vol. 50 (4) pp. 1078 – 1082. 24. Chung, B. -K. and Chuah, H. -T., 2003. Modeling of RF Absorber for Application in Design of Anechoic Chamber, Progress In Electromagnetics Research, Vol. 43,pp. 273-285. 25. Eccosorb, H., 1973. Hair Type, Broadband Microwave Absorber, Technical Bulletin 8-21, Emerson and Cumming 26. Emerson, C., 2008. Data sheet of Eccosorb VHP NRL Pyramidal Microwave Absorber, Nijverheidsstraat, Westerlo, Belgium: Emerson & Cuming. 27. Foteinopoulou, S., 2012. Photonic-crystal-based Polaritonic Metamaterials Functional at Terahertz, 2012 14th International Conference on Transparent Optical Networks (ICTON),pp. 1 – 4. 28. García-García, J., Bonache, J., Gil, I., Martín, F., Ahumada, M. del C.V. and Martel, J., 2006 Miniaturized Microstrip and CPW Filters Using Coupled Metamaterial Resonators, IEEE Transactions on Microwave Theory and Techniques, Vol. 54 (6), pp. 2628 – 2635. 29. Gentile, G., Jovanovic, V., Pelk, M. J., Jiang, L., Dekker, R., de Graaf, P., Rejaei, B., de Vreede, L. C. N., Nanver, L. K., Spirito, M., 2013. Silicon-Filled Rectangular Waveguides and Frequency Scanning Antennas for mm-Wave Integrated Systems, IEEE Transactions on Antennas and Propagation, Vol. 61 (12) pp. 5893 – 5901. 30. Gianvittorio, J. P., Rahmat‐Samii, Y., 2004. Fractal Yagi Antennas: Design, Simulation, and Fabrication, Microwave and Optical Technology Letters, Vol. 41 (5), pp. 375-380 31. Gil, I., Bonache, J., Gil, M., Garcia-Garcia, J., Martin, F., Marques, R., 2006. Modelling Complementary-Split-Rings-Resonator (CSRR) Left-Handed Lines with Inter-Resonator's Coupling, 2006, IEEE Mediterranean Electrotechnical Conference (MELECON 2006), pp.225 – 228. 32. Ghosh, S., Bhattacharyya, S., and Srivastava K. V., 2013. Design of a Bandwidthenhanced Ultra Thin Metamaterial Absorber, Progress In Electromagnetics Research Symposium Proceedings, pp. 1097 – 1101. 33. Gu, S., Barrett, J., Hand, T. H., Popa, B. I., and Cummer, S. A., 2010. A broadband lowreflection metamaterial absorber, Journal of Applied Physics, Vol. 108 (6), pp. 1 – 6. 34. Gunduz, O. T., and Sabah, C., 2014. A Novel Left-Handed Metamaterial Based on Circular Resonator and Wire Strip for Waveguide Applications, 2014 16th International Conference on Transparent Optical Networks (ICTON), pp. 1 -4. 35. Hasnain, A., Hafiz, B. M., Roslan, S., Imran, M. I., Takyuddin, A. A., Rusnani, A., and Khusairi, O. M., 2007. Development of an Economic and Effective Microwave Absorber, 2007 Asia-Pasific Conference on Applied Electromagnetics (APACE 2007), pp. 1 – 5. 36. H. Bahrami, M. Hakkak, and A. Pirhadi, 2008. Analysis and Design of Highly Compact Bandpass Waveguide Filter Using Complementary Split Ring Resonators (CSRR), Progress In Electromagnetics Research, Vol. 80, pp. 107 - 122. 37. He, X.-J., Wang, Y., Wang, J.-M., Gui, T.-L,, 2010. Thin-film Sensor Based Tip-Shaped Split Ring Resonator Metamaterial for Microwave Application, Microsystem Technologies,Vol. 16, issue 19, pp. 1735-1739 38. Hemming, L. H., 2002. Electronics Absorbing Material. In Electromagnetic Anechoic Chambers – A Fundamental Design and Specification Guide. Canada, IEEE Press & Willey Interscience. 39. Hou Z. -Z., Li, X. X., and Hao, C. K., 2008. Design of Wideband Filter Using Split-ring Resonator DGS, Progress In Electromagnetics Research Symposium, pp. 33 – 36. 40. Hu, F., Wang, L., Quan, B., Xu, X., Li, Z., Wu, Z., and Pan, X., 2013. Design of a Polarization Insensitive Multiband Terahertz Metamaterial Absorber, Journal Physics D:Applied Physics, Vol. 46. 41. Jakovljević, M., Vasić B., Isić G., Gajić, R., Oates T., Hinrichs K., Bergmair I., Hingerl K.,2011. Oblique Incidence Reflectometry and Spectroscopic Ellipsometry of Split-Ring Resonators in Infrared, Journal of Nanophotonics, Vol. 5 (1), pp. 051815–10. 42. Kafesaki, M., Kenanakis, G., Economou, E. N., Soukoulis, C. M., Chiral Metamaterials: A Tool for THz Polarization Control, 2014. 2014 16th International Conference on Transparent Optical Networks (ICTON), pp. 1 -2 43. Kajehpour, A., and Mirtaheri, S.A., 2008. Analysis of Pyramidal EM Wave Absorber by FDTD method and Comparing with Capacitance and Homogenization Method, Progress in Electromagnetic Research Letter, Vol. 3, pp. 123-131. 44. Karimzadih, R. B., Dadashzadehl, G., Kharakhili, F.. G., 2007. Using of CSRR and its Equivalent Circuit Model in Size Reduction of Microstrip Antenna, Proceedings of Asia- Pacific Microwave Conference 2007, pp. 1 - 4. 45. Karthikeyan, S. S., Arulvani, M., 2010. Double Negative Metamaterial Design using Open Split Ring Resonator, 2010 IEEE Students' Technology Symposium (TechSym), pp. 142 –145. 46. Kim, K. -H.,. Cho, Y. –J., Hwang, S. -H., and Park, S. -O., 2005. Bandnotched UWB planar Monopole Antenna With Two Parasitic Patches, Electronics Letters, Vol. 41 (14), pp. 783 – 785. 47. Kim, K. -H. and Park, S. -O., 2006. Analysis of the Small Band-Rejected Antenna With The Parasitic Strip for UWB, IEEE Transactions on Antennas and Propagation, Vol. 54 (6), pp. 1688 – 1692. 48. Knott, E. F., Shaeffer, J., Tuley, M, 2004. Radar Absorbing Material. In Radar Cross Section - Second Edition, SciTech Publishing. 49. Kulwinder, S., Kumar, Y., Satvir, S., 2012. A modified Bow Tie Antenna with U-Shape Slot for Wireless Applications, International Journal of Emerging Technology and Advanced Engineering, Vol. 2 (10), pp. 158 – 162. 50. Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith D. R., and Padilla, W. J., 2009. Design, Theory, and Measurement of a Polarization-Insensitive Absorber for Terahertz Imaging, Physics Review, Vol. 79, no. 125104. 51. Lata, S., Kumar, V., 2013. Design and Simulation of Minkowski Fractal Patch Antenna on SOI Substrate for Next Generation Wireless Networks, International Journal of Emerging Technology and Advanced Engineering, Vol. 8 (3), pp. 92 – 95. 52. Lee, H., Lee, Hyungsup., 2012. Isolation Improvement Technique for Two Closely Spaced Loop Antennas Using MTM Absorber Cells, International Journal of Antennas and Propagation, Vol. 2012, pp. 1 – 9. 53. Li, M., Yang, H. -L. Hou, X. -W. Tian, Y. and Hou, D. -Y., 2010. Perfect Metamaterial Absorber with dual bands, Progress In Electromagnetics Research, Vol. 108, pp. 37 – 49. 54. Li-Meng, S., Zhu, W., Sun, H.-J, A., 2013. Compact, Planar, and CPW-Fed Metamaterial- Inspired Dual-Band Antenna , IEEE Antennas And Wireless Propagation Letters, Vol. 12, pp. 305 – 308. 55. Liu, Y., Tang, X.,. Zhang, Z. X., and Huang, X. L., 2013. Novel Nested Split-Ring- Resonator (SRR) for Compact Filter Application, Progress In Electromagnetics Research, Vol. 136, pp. 765 – 773. 56. Lincy, B. H, Srinivasan, A., and Rajalakshmi, B., 2013. Wide Band Fractal Microstrip Antenna For wireless Application, Proceedings of 2013 IEEE Conference on Information and Communication Technologies (lCT 2013), pp. 735 – 738. 57. Mahyuddin, N. M., Ab. Kadir, N. F. S., 2014. Design of a 5.8 GHz Bandstop Filter Using Split Ring Resonator Array, The 8th International Conference on Robotic, Vision, Signal Processing & Power ApplicationsLecture Notes in Electrical Engineering, Vol. 291, pp 473 – 482. 58. Maissen, C., Scalari, G., Valmorra, F., Cibella, S., Leoni, R., Reichl, C., Charpentier, C., Wegscheider, W., Beck, M., Faist, J., 2014. Ultrastrong Coupling in the Near-field of Complementary Split Ring Resonators, Mesoscale and Nanoscale Physics, pp. 1 -9. 59. Malekpoor, H., and S. Jam, 2013. Miniaturised asymmetric E-shaped microstrip patch antenna with folded-patch feed, IET Microwaves, Antennas & Propagation, Vol. 7 (2), pp. 85-91. 60. Marques, R., Medinaand, R., Raffi, E. I., 2002. Role of Bi-anistropy in Negative Permeability and Left-handed Metamaterials, Physics Revie B, Vol. 65, pp.144441. 61. Marques, R., Baena, J. D, Martel, J., Medina, F., Falcone, F., Sorolla, M., and Martin, F., 2003a, Novel Small Resonant Electromagnetic Particles for Metamaterial and Filter Design, International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 439 – 442. 62. Marques, R., Mesa, F., Martel, J., Medina, F., 2003b. Comparative Analysis of Edge - and Broadside - Coupled Split Ring Resonators for Metamaterial Design - Theory and Experiments, IEEE Transactions on Antennas and Propagation, Vol. 51 (10), pp. 2572 – 2581. 63. Marques, R., Baena, J. D., Beruete, M., Falcone, F., Lopetegi, T., Sorolla, M., Mart´ın F., and J Garcia, J., 2005. Ab Initio Analysis of Frequency Selective Surfaces Based on Conventional and Complementary Split Ring Resonators, Journal of Optics A: Pure and Applied Optics, Vol. 7, pp. 38 – 43. 64. Moraes, L. B. and Barbin, S. E., 2011. A comparison Between Minkowski and Koch Fractal Patch Antennas, 2011 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), pp. 17 – 21. 65. Mrabet, O. E., Aznabet, M., Falcone, F., Rmili, H., Floc'h, J. M., Drissi, M. and Essaaidi, 66. M. A., 2013, Compact Split Ring Resonator Antenna For Wireless Communication Systems, Progress In Electromagnetics Research Letters, Vol. 36, pp. 201-207. 67. Neelakanta. P. S., and Park J. C., 1995. Microwave Absorption by Conductor loaded Dielectric, IEEE Tranactions on Microwave Theory and Technique. Vol. 43 (6), pp 1381 –1383 68. Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., Lu, W., 2013. A Dual-Band Polarization Insensitive Metamaterial Absorber with Split Ring Resonator, Optical and Quantum Eectronics, Vol. 45 (7), pp. 747 – 753. 69. Öznazlı, V., and Ertürk, V. B., 2006. On The Use Of Split-Ring Resonators And Complementary Split-Ring Resonators For Novel Printed Microwave Elements: Simulations, Experiments And Discussions, pp. 1 -4. 70. Ortiz, J. D., Baena, J. D., Losada, V., Medina, F., and Araque, J. L., 2013. Spatial Angular Filtering by FSSs Made of Chains of Interconnected SRRs and CSRRs, IEEE Microwave and Wireless Components Letters, Vol. 23 (9), pp. 477 – 479. 71. Padilla, J. D, 2006. Spectroscopy of Metamaterials from Infrared to Optical Frequencies, Journal Optical Society of America B, Vol. 23 (3), pp. 404 – 414 72. Panda, J. R., Saladi A. S. R., and Kshetrimayum, R. S., 2011. An Inset-fed Dual- Frequency Circular Microstrip Antenna with a Rectangular Slot for Application in Wireless Communication, Proceeding International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 976 – 981. 73. Pendry, J. B., Holden, A. J., Robins, D. J., and W. J. Stewart, 1999. Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Transactions on Microwave Theory and Techniques, Vol. 47 (11), pp. 2075 – 2084. 74. Pendry, J. B., 2003. New Lenses for Imaging the Near Field, Postconference Digest Quantum Electronics and Laser Science (QELS), pp. 1 – 2. 75. Perez, D., Gil, I., and Fernandez-Garcıa, R., 2012. Radiofrequency Interferece Filters Design Based on Complementary Split Rings Resonators, PIERS Proceedings, pp. 818 –822. 76. Rahim, M.K.A., Gardner, P., 2004, The Design of Nine Element Quasi Microstrip Log Periodic Antenna, Proceedings RF and Microwave Conference (RFM 2004), pp. 132 – 135. 77. Ramakrishna, S. A., 2005. Physics of Negative Refractive Index Materials, Reports on Progress Physics, Vol. 68, pp. 449 – 451 78. Reig, C., Avila-Navarro, E., 2014., Printed Antennas for Sensor Applications: A Review, IEEE Sensors Journal, pp. 2406 – 2418. 79. Rusu, M., Hirvonen, M., Rahimi, H., Enoksson, P., Rusu, C., Pesonen, N., Vermesan, O., 80. Rustad, H., 2008. Minkowski Fractal Microstrip Antenna for RFID Tags, , 38th European 2008 Microwave Conference (EuMC 2008), pp. 666 – 669. 81. Sajin, G., Craciunoiu, F., Mocanu, I.A., Ciocan, S, 2013. Steering Capability of a mm- Wave Left-handed Transmission Line Antenna, 2013 International Semiconductor Conference (CAS), Vol. 1, pp. 101 – 104. 82. Sanz-Izquierdo, B., Parker, E. A., and Batchelor, J. C., 2011. Dual-Band Tunable Screen Using Complementary Split Ring Resonator, IEEE Transactions on Antennas and Propagation, Vol. 58 (11), pp. 3761 – 3765. 83. Shafie, S. N., Adam, I. and Soh, P. J, 2010. Design and Simulation of a Modified Minkowski Fractal Antenna for Tri-Band Application, 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation (AMS), pp. 567 – 570. 84. Shrestha, S., Lee, S. R.,. Choi, D. –Y., 2013. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting, International Journal of Antennas and Propagation, Vol. 2014, pp. 1-9. 85. Siddiqui, J. Y., Saha, C., Antar, Y. M. M., 2014. Compact SRR Loaded UWB Circular Monopole Antenna With Frequency Notch Characteristics, IEEE Transactions on Antennas and Propagation, vol. 62 (8), pp. 4014 – 4020. 86. Singh, P. K., S. K. Ameri1, L. C., Afsar M. N., and Sonkusale, S., 2013 Broadband Millimeterwave Metamaterial Absorber Based on Embedding of Dual Resonators, Progress In Electromagnetics Research, Vol. 142, pp. 625 – 638. 87. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity, Physics Review Letter, Vol. 84, pp. 4184 – 4187. 88. Suganthi, S., Tharini, K. S., Sarankumar, P. S., Raghavan, S., Kumar, D., 2011. Design and Simulation of Planar Minkowski Fractal Antennas, 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), pp. 1 -5. 89. Tao, H., Bingham, C. M., Pilon, D., Fan, K., Strikwerda, A. C., Shrekenhamer, D., Padilla, 90. W. J. Zhang X. and Averitt, R D., 2010. A Dual Band terahertz Metamaterial Absorber, Journal of Physics D: Applied Physics, Vol. 43 (22), pp. 1 – 5. 91. Tak, J., L., Youngki, L., and Choi, J., 2013. Design of a Metamaterial Absorber for ISM Applications, Journal of Electromagnetic Engineering And Science, Vol. 13 (1), pp. 1 – 7. 92. TDK, 2008. Absorber for Microwave and Millimeter Wave Test Chamber, TDK RF Solution Inc. 93. Ucar, M. H., Sondas, B., A. and Erdemli, Y. E., 2008. Switchable Split-Ring Frequency Selective Surfaces, Progress In Electromagnetics Research B, Vol. 6, pp. 65 – 79. 94. Vakani, M. U., Wandra, K. H., Sarvaiya, A. K., 2012. Comparative Analysis of Small Size Dual Band Split Ring Resonator Based Antenna, 2012 Nirma University International Conference on Engineering (NUiCONE), pp. 1 – 4. 95. Veselago, V., 1968. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ, Soviet Physics Uspekhi, Vol. 10 (4), pp. 509 – 514. 96. Vorst., A. V., Rosen, A., Kotsuka, Y., 2006. EM Wave Absorbers Protecting Biological and Medical Environment. In RF /Microwave Interaction with Biological Tissues, John Wiley & Sons. 97. Wee F. H., Malek, F., Sreekantan, S., Al-Amani, A. U., Ghani, F., and You, K. Y., 2011. Investigation Of The Characteristics Of Barium Strontium Titanate (BST) Dielectric Resonator Ceramic Loaded On Array Antennas, Progress In Electromagnetics Research, Vol. 121, pp. 181-213. 98. Wen, Q. Y., Zhang, H. W., Yang, Q. H., Chen, Z., Zhao, B. H., Long, Y., and Jing, Y. L., 2012. Perfect Metamaterial Absorbers in Microwave and Terahertz Bands. In Metamaterial, Intech, pp. 501 – 512. 99. Ye, Q. W., Lin H., Chen X. Q., Yang, H. L., 2011. A Tunable Metamaterial Absorber Made by Micro-Gaps Structures, 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), pp. 234 – 237. 100. Yu, Z., Mo, S., Long, Z., A Novel UWB SRR Antenna, 2011. 2011 IEEE International Symposium on Antennas and Propagation (APSURSI 2011), pp. 1486 – 1489. 101. Yurduseven, O., D. Smith, N. Pearsall, I. A. Forbes, 2012. Triband Short-Circuited Suspended Solar Patch Antenna, 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), pp. 294-297. 102. Zamora, G., Zuffanelli, S., Paredes, F., Herraiz-Martinez, F. J., Martin, F., Bonache, J., 2014. Leaky-Wave Antenna (LWA) Based On Slot Line And Non-Bianisotropic Split Ring Resonators (NB-SRRs) And Comparison With CPW Approach, 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 48 – 51. 103. Zarrabi, F. B., Sharma, S., Mansouri, Z., Geran, F., 2014. Triple Band Microstrip Slot Antenna for WIMAX/WLAN Applications with SRR Shape Ring, 2014 Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), pp. 368 – 371. 104. Zhang, T., Yang, G. –H., Li, W. -L., Wu, Q., 2010. A Novel Cubic Isotropic Band-Reject Frequency Selective Surface, 2010 12th IEEE International Conference on Communication Technology (ICCT), pp. 543 – 546. 105. Zhou, L., Liu, S., Zhang, H. F., Kong, X. –K., and Guo, Y. -N., 2011. Compact Dual-Band Bandpass Filter using Improved Split Ring Resonators Based on Stepped Impedance Resonator," Progress In Electromagnetics Research Letters, Vol. 23, pp. 57 – 63. 106. Zhu, S., Ford, K. L. A., Tennant, and Langley, R. J., 2011. Electrically Small Triple-band SRR Antenna, 2011 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 831 - 834. 107. Ziolkowski, R. W., 2003. Design, Fabrication, and Testing of Double Negative Metamaterials, IEEE Transactions on Antennas and Propagation, Vol. 51 (7), pp. 1516 – 1529.