Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh
The scarcity of energy has led to the invention of alternative solutions to the conventional power generation system. Micro-power generation system is one of the potential sustainable solutions that provide better energy resource for small electronic devices as compared to conventional lithium-ion b...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English |
Published: |
2017
|
Subjects: | |
Online Access: | http://eprints.utem.edu.my/id/eprint/20496/1/Investigation%20of%20effects%20of%20combustor%20wall%20thickness%20on%20the%20flame%20stabilization%20limits%20for%20micro%20combustors%20with%20wire%20mesh.pdf http://eprints.utem.edu.my/id/eprint/20496/2/Investigation%20of%20effects%20of%20combustor%20wall%20thickness%20on%20the%20flame%20stabilization%20limits%20for%20micro%20combustors%20with%20wire%20mesh.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-utem-ep.20496 |
---|---|
record_format |
uketd_dc |
spelling |
my-utem-ep.204962022-10-25T16:20:28Z Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh 2017 Gheidan, Abdelgader Agilah Saleh T Technology (General) TJ Mechanical engineering and machinery The scarcity of energy has led to the invention of alternative solutions to the conventional power generation system. Micro-power generation system is one of the potential sustainable solutions that provide better energy resource for small electronic devices as compared to conventional lithium-ion batteries. The difficulty to stabilize the flame in micro-combustors is the main obstacle faced by researchers, which is hugely caused from heat loss. Nevertheless, huge efforts towards attaining flame stabilization have been made within this few years back. In this research, the effect of combustor wall thickness on the flame stabilization limits of micro combustors with stainless steel wire mesh has been investigated. Numerical simulations were performed using a two-dimensional {2-D)and three dimensional (3-D) steady-state model. The wall thickness was varied from 0.3 mm to 1.2 mm. The governing equations were solved using ANSYS Release 16.2 with fluent capability. The blowout limits for each of wall thickness were determined. From the results, it is suggested that the flame stabilization limits for the combustors made of quartz tube has a direct relationship with the wall thickness flame stabilization limits. The results observed in the graph of combustor (quartz-quartz) (2-D) whenever increase thickness combustor from 0.3 mm to 1.2 mm this leads to more the flame stability that means the velocity blowout occurs at high value. But, in three dimension (quartz-quartz) (3-D) at velocity 0.47 m/s when increase thickness more than l mm it is not effective as results the better thickness of flame stability thickness 1 mm. Nevertheless, the strategy of improving flame stabilization limits by increasing the wall thickness has a limited range of effectiveness. The benefits of this project is to provide an alternative solution for saving more power energy consumption and to serve small scale of electronic device. 2017 Thesis http://eprints.utem.edu.my/id/eprint/20496/ http://eprints.utem.edu.my/id/eprint/20496/1/Investigation%20of%20effects%20of%20combustor%20wall%20thickness%20on%20the%20flame%20stabilization%20limits%20for%20micro%20combustors%20with%20wire%20mesh.pdf text en public http://eprints.utem.edu.my/id/eprint/20496/2/Investigation%20of%20effects%20of%20combustor%20wall%20thickness%20on%20the%20flame%20stabilization%20limits%20for%20micro%20combustors%20with%20wire%20mesh.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=105213 mphil masters Universiti Teknikal Malaysia Melaka Faculty of Mechanical Engineering Abdul Munir, Fudhail |
institution |
Universiti Teknikal Malaysia Melaka |
collection |
UTeM Repository |
language |
English English |
advisor |
Abdul Munir, Fudhail |
topic |
T Technology (General) TJ Mechanical engineering and machinery |
spellingShingle |
T Technology (General) TJ Mechanical engineering and machinery Gheidan, Abdelgader Agilah Saleh Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
description |
The scarcity of energy has led to the invention of alternative solutions to the conventional power generation system. Micro-power generation system is one of the potential sustainable solutions that provide better energy resource for small electronic devices as compared to conventional lithium-ion batteries. The difficulty to stabilize the flame in micro-combustors is the main obstacle faced by researchers, which is hugely caused from heat loss. Nevertheless, huge efforts towards attaining flame stabilization have been made within this few years back. In this research, the effect of combustor wall thickness on the flame stabilization limits of micro combustors with stainless steel wire mesh has been investigated. Numerical simulations were performed using a two-dimensional {2-D)and three dimensional (3-D) steady-state model. The wall thickness was varied from 0.3 mm to 1.2 mm. The governing equations were solved using ANSYS Release 16.2 with fluent capability. The blowout limits for each of wall thickness were determined. From the results, it is suggested that the flame stabilization limits for the combustors made of quartz tube has a direct relationship with the wall thickness flame stabilization limits. The results observed in the graph of combustor (quartz-quartz) (2-D) whenever increase thickness combustor from 0.3 mm to 1.2 mm this leads to more the flame stability that means the velocity blowout occurs at high value. But, in three dimension (quartz-quartz) (3-D) at velocity 0.47 m/s when increase thickness more than l mm it is not effective as results the better thickness of flame stability thickness 1 mm. Nevertheless, the strategy of improving flame stabilization limits by increasing the wall thickness has a limited range of effectiveness. The benefits of this project is to provide an alternative solution for saving more power energy consumption and to serve small scale of electronic device. |
format |
Thesis |
qualification_name |
Master of Philosophy (M.Phil.) |
qualification_level |
Master's degree |
author |
Gheidan, Abdelgader Agilah Saleh |
author_facet |
Gheidan, Abdelgader Agilah Saleh |
author_sort |
Gheidan, Abdelgader Agilah Saleh |
title |
Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
title_short |
Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
title_full |
Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
title_fullStr |
Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
title_full_unstemmed |
Investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
title_sort |
investigation of effects of combustor wall thickness on the flame stabilization limits for micro combustors with wire mesh |
granting_institution |
Universiti Teknikal Malaysia Melaka |
granting_department |
Faculty of Mechanical Engineering |
publishDate |
2017 |
url |
http://eprints.utem.edu.my/id/eprint/20496/1/Investigation%20of%20effects%20of%20combustor%20wall%20thickness%20on%20the%20flame%20stabilization%20limits%20for%20micro%20combustors%20with%20wire%20mesh.pdf http://eprints.utem.edu.my/id/eprint/20496/2/Investigation%20of%20effects%20of%20combustor%20wall%20thickness%20on%20the%20flame%20stabilization%20limits%20for%20micro%20combustors%20with%20wire%20mesh.pdf |
_version_ |
1776103105787592704 |