Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy

The efficient use of urea fertilizer (UF) as an important nitrogen (N) source in the rice production has been a concern. The main problem is significant amount of the N fertilizer is lost during the year of application. Various studies that had adequately addressed the issue by using UF, which conta...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamad Yatim, Norazlina
Format: Thesis
Language:English
English
Published: 2016
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/20513/1/Functionalized%20Multiwall%20Carbon%20Nanotubes%20For%20Efficiency%20Enhancement%20Used%20Of%20Nitrogenous%20Fertilizer%20In%20Paddy.pdf
http://eprints.utem.edu.my/id/eprint/20513/2/Functionalized%20Multiwalled%20Carbon%20Nanotubes%20For%20Efficiency%20Enhancement%20Used%20Of%20Nitrogenous%20Fertilizer%20In%20Paddy.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.20513
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Mohamad Yatim, Norazlina
Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy
description The efficient use of urea fertilizer (UF) as an important nitrogen (N) source in the rice production has been a concern. The main problem is significant amount of the N fertilizer is lost during the year of application. Various studies that had adequately addressed the issue by using UF, which contains high amounts of N (47%) have so far had little success. Nanotechnology advancements in nutrition strategies involving multiwalled carbon nanotubes (MWCNTs) have attempted to provide solutions for N losses and low N use efficiency (NUE) by plants. However, agglomerates of MWCNTs limit their efficient mobility properties. Since a high degree of MWCNTs functionalization would lead to separation of nanotubes bundle, advanced N Nano-carrier is developed based on f-MWCNTs grafted with UF to produce urea-MWCNTs (UF-MWCNTs) for enhancing the nitrogen uptake (NU) and NUE. The grafted N can be absorbed and utilized by rice efficiently to overcome the N propensity for loss from soil‐plant systems when UFMWCNTs are applied as fertilizer. Screening process parameters were structured via Plackett Burman experimental design of experiment involving nine identified factors, which were the amount of MWCNTs, percentage of functionalization, stirring time, stirring temperature, agitation, sonication frequency, sonication temperature, sonication time and amount of ammonium chloride with corresponding response of Total N attached on the surface of MWCNTs. As a result, functionalization and amount of MWCNTs used were found to be the most significant factors and chosen for further optimization processes. Analyses were structured via the Response Surface Methodology based on a five-level Central Composite Design consisting of f-MWCNTs amount between 0.10–0.60wt% and functionalization reflux time varying from 12-24hrs as the design factors. The individual and interaction effects between the specified factors and the corresponding responses (NUE, NU) were investigated. The UF-MWCNTs with optimized 0.5wt% f-MWCNTs treated at 21hrs functionalization reflux time achieved tremendous NUE up to 96% and NU at 1180mg/pot. A significant model term (p-value < 0.05) for NUE and NU responses were confirmed by the ANOVA of two quadratic models. Homogeneous dispersion with non-agglomerate features was observed on UF-MWCNTs via FESEM and TEM. Direct evidence regarding the physical translocation of biodegraded f-MWCNTs through phospholipid bilayers into plant roots involving soil-plant interaction via mass flow route and direct penetration into the subcellular region of the plant cells were revealed via TEM imaging investigation. Surface functionalization was strongly suggested to have a bigger effect on the translocation of f-MWCNTs than the size factor. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs approach provides a promising strategy in enhancing plant nutrition for rice.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Mohamad Yatim, Norazlina
author_facet Mohamad Yatim, Norazlina
author_sort Mohamad Yatim, Norazlina
title Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy
title_short Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy
title_full Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy
title_fullStr Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy
title_full_unstemmed Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy
title_sort functionalized multiwall carbon nanotubes for efficiency enhancement used of nitrogenous fertilizer in paddy
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Manufacturing Engineering
publishDate 2016
url http://eprints.utem.edu.my/id/eprint/20513/1/Functionalized%20Multiwall%20Carbon%20Nanotubes%20For%20Efficiency%20Enhancement%20Used%20Of%20Nitrogenous%20Fertilizer%20In%20Paddy.pdf
http://eprints.utem.edu.my/id/eprint/20513/2/Functionalized%20Multiwalled%20Carbon%20Nanotubes%20For%20Efficiency%20Enhancement%20Used%20Of%20Nitrogenous%20Fertilizer%20In%20Paddy.pdf
_version_ 1747833972262436864
spelling my-utem-ep.205132021-10-10T22:49:37Z Functionalized Multiwall Carbon Nanotubes For Efficiency Enhancement Used Of Nitrogenous Fertilizer In Paddy 2016 Mohamad Yatim, Norazlina T Technology (General) TA Engineering (General). Civil engineering (General) The efficient use of urea fertilizer (UF) as an important nitrogen (N) source in the rice production has been a concern. The main problem is significant amount of the N fertilizer is lost during the year of application. Various studies that had adequately addressed the issue by using UF, which contains high amounts of N (47%) have so far had little success. Nanotechnology advancements in nutrition strategies involving multiwalled carbon nanotubes (MWCNTs) have attempted to provide solutions for N losses and low N use efficiency (NUE) by plants. However, agglomerates of MWCNTs limit their efficient mobility properties. Since a high degree of MWCNTs functionalization would lead to separation of nanotubes bundle, advanced N Nano-carrier is developed based on f-MWCNTs grafted with UF to produce urea-MWCNTs (UF-MWCNTs) for enhancing the nitrogen uptake (NU) and NUE. The grafted N can be absorbed and utilized by rice efficiently to overcome the N propensity for loss from soil‐plant systems when UFMWCNTs are applied as fertilizer. Screening process parameters were structured via Plackett Burman experimental design of experiment involving nine identified factors, which were the amount of MWCNTs, percentage of functionalization, stirring time, stirring temperature, agitation, sonication frequency, sonication temperature, sonication time and amount of ammonium chloride with corresponding response of Total N attached on the surface of MWCNTs. As a result, functionalization and amount of MWCNTs used were found to be the most significant factors and chosen for further optimization processes. Analyses were structured via the Response Surface Methodology based on a five-level Central Composite Design consisting of f-MWCNTs amount between 0.10–0.60wt% and functionalization reflux time varying from 12-24hrs as the design factors. The individual and interaction effects between the specified factors and the corresponding responses (NUE, NU) were investigated. The UF-MWCNTs with optimized 0.5wt% f-MWCNTs treated at 21hrs functionalization reflux time achieved tremendous NUE up to 96% and NU at 1180mg/pot. A significant model term (p-value < 0.05) for NUE and NU responses were confirmed by the ANOVA of two quadratic models. Homogeneous dispersion with non-agglomerate features was observed on UF-MWCNTs via FESEM and TEM. Direct evidence regarding the physical translocation of biodegraded f-MWCNTs through phospholipid bilayers into plant roots involving soil-plant interaction via mass flow route and direct penetration into the subcellular region of the plant cells were revealed via TEM imaging investigation. Surface functionalization was strongly suggested to have a bigger effect on the translocation of f-MWCNTs than the size factor. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs approach provides a promising strategy in enhancing plant nutrition for rice. 2016 Thesis http://eprints.utem.edu.my/id/eprint/20513/ http://eprints.utem.edu.my/id/eprint/20513/1/Functionalized%20Multiwall%20Carbon%20Nanotubes%20For%20Efficiency%20Enhancement%20Used%20Of%20Nitrogenous%20Fertilizer%20In%20Paddy.pdf text en public http://eprints.utem.edu.my/id/eprint/20513/2/Functionalized%20Multiwalled%20Carbon%20Nanotubes%20For%20Efficiency%20Enhancement%20Used%20Of%20Nitrogenous%20Fertilizer%20In%20Paddy.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=105860 phd doctoral Universiti Teknikal Malaysia Melaka Faculty Of Manufacturing Engineering 1. Abu Amr, S.S., Aziz, H.A. & Bashir, M.J.K., 2014. Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone. Applied Water Science, 4(3), pp.231–239. 2. Abuilaiwi, F.A., Laoui, T., Al-Harthi, M., M.A.A., 2010. Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. The Arabian Journal for science and engineering, 35, pp.37–48. 3. Agren, G.I. and Franklin, O., 2003. Root : Shoot Ratios, Optimization and Nitrogen Productivity. Annals of botany, 92, pp.795–800. 4. Agren, G.I., Wetterstedt, J.Å.M. & Billberger, M.F.K., 2012. Nutrient limitation on terrestrial plant growth--modeling the interaction between nitrogen and phosphorus. The New phytologist, 194(4), pp.953–60. 5. Ahmad, R., Zaheer, S.H. & Ismail, S., 1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Science, 85(1), pp.43–50. 6. Ahmad, M., Foroughi, M.R., Monshi, R.M., 2012. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 2(3), pp.154–160. 7. Albini, A., Adriana, M., Valentina, P., Alessandro, V., Agostina, P., Elisa, T., Sara, R., Massimiliano, F., Enrico. S., Ilaria, C., Rosaria, F., Giovanna, S., Fausto. N., Douglas, M.C.,Valbusa, U., 2010. Interactions of single-wall carbon nanotubes with endothelial cells. Nanomedicine : nanotechnology, biology, and medicine, 6(2), pp.277–88. 8. Ali-Boucetta, H., Nunes, A., Sainz, R., Herrero, M.A., Tian, B. Prato, M. Bianco, A., Kostarelos, K., 2013. Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angewandte Chemie (International ed. in English), 52(8), pp.2274–8. 9. Allen, B.L., Kichambare, P.D., Gou, P., Vlasova, I.I., Kapralov, A.A., Konduru, N., Kagan, V.E., Star, A., 2008. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano letters, 8(11), pp.3899–3903. 10. Amberger, A., 1996. Plant Nutrition 4th Edition, UniTaschenbücher 846, Verlag Eugen Ulmer, Stuttgart, Germany. 11. Anon, 2013. Background information - What is transmission electron microscopy? | MyScope. Australian Microscopy & Microanalysis Research Facility. Available at: http://www.ammrf.org.au/myscope/tem/background/ [Accessed May 19, 2016]. 12. Anon, 2015. World Population Prospects - Population Division - United Nations. Department of economic and social affairs. Available at: http://esa.un.org/unpd/wpp/ [Accessed May 25, 2016]. 13. Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C. 2006. Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon, 44(11), pp.2202–2211. 14. Auffan, M., Rose, J., Bottero, J-Y., Lowry, G.V., Jolivet, J-P., Wiesner, M.R., 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature nanotechnology, 4(10), pp.634–41. 15. Azarpour, E., Moraditochaee, M. & Bozorgi, H.R., 2014. Effect of nitrogen fertilizer management on growth analysis of rice cultivars. International Journal of Biosciences (IJB), 4(5), pp.35–47. 16. Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., Tour, J.M., 2001. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. Journal of the American Chemical Society, 123(27), pp.6536–42. 17. Baker, S.E., Wei C., Tami L. L., Kevin P. W., Robert, J. H., 2002. Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization. Nano Letters, 2(12), pp.1413–1417. 18. Bale, S.S., Asuri, P., Karajanagi, S. S., Dordick, J. S., Kane, R. S. 2007. Protein-Directed Formation of Silver Nanoparticles on Carbon Nanotubes. Advanced Materials, 19(20), pp.3167–3170. 19. Barton, L. and Colmer, T.D., 2006. Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass. Agricultural water management, 80(Petrovic 1990), pp.160–175. 20. Becker, M.L. et al., Fagan, J. A., Gallant, N. D., Bauer, B. J., Bajpai, V., Hobbie, E. K., Lacerda, S. H., Migler, K. B., Jakupciak, J. P., 2007. Length-Dependent Uptake of DNA-Wrapped Single-Walled Carbon Nanotubes. Advanced Materials, 19(7), pp.939–945. 21. Bekyarova, E., Ni, Y., Malarkey, E.B., Montana, V., McWilliams, J.L., Haddon, R.C., Parpura, V., 2005. Applications of Carbon Nanotubes in Biotechnology and Biomedicine. Journal of biomedical nanotechnology, 1(1), pp.3–17. 22. Benoit, J.M., Buisson, J. P., Chauvet, O., Godon, C., Lefrant, S. 2002. Low-frequency Raman studies of multiwalled carbon nanotubes: Experiments and theory. Physical Review B, 66(7), p.73417. 23. Bergeson, L.L., 2010. Nanosilver: US EPA’s pesticide office considers how best to proceed. Environmental Quality Management, 19(3), pp.79–85. Available at: http://doi.wiley.com/10.1002/tqem.20255 [Accessed January 13, 2016]. 24. Bernhard, A., 2010. The Nitrogen Cycle: Processes, Players, and Human Impact. Nature education knowledge, 2(2), p.12. 25. Bethune, D.S., Klang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R., 1993. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), pp.605–607. 26. Bhattacharyya, A., Bhaumik, A., Rani, P.U., Mandal, S., Epidi, T.T., 2010. Nano-particles - A recent approach to insect pest control. African Journal of Biotechnology, 9(24), pp.3489–3493. 27. Bianco, A., Kostarelos, K., Partidos, C.D., Prato, M., 2005. Biomedical applications of functionalised carbon nanotubes. Chemical communications (Cambridge, England), (5), pp.571–7. 28. Biondini, M.E. and Grygiel, C.E., 1994. Landscape Distribution of Organisms and the Scaling of Soil Resources. The America Naturalist, 143(6), pp.1026–1054. 29. Bloom, A.J., Chapin, F.S., Mooney, H.A., 1985. Resource Limitation in Plants-An Economic Analogy. Annual Review of Ecology and Systematics, 16(1), pp.363–392. 30. BlueRingMedia, 2003. Illustration showing the plant cell anatomy. Shutterstock. Available at: http://www.shutterstock.com/pic-141162655/stock-vector-illustration-showing-the-plant-cell-anatomy.html. 31. Boghossian, A.A., Ham, M-H., Choi, J.H., Strano, M.S., 2011. Biomimetic strategies for solar energy conversion: a technical perspective. Energy & Environmental Science, 4(10), p.3834. 32. Bojovic, B. and Markovic, A., 2009. Correlation between nitrogen and chlorophyll content in wheat. Kragujevac Journal of Science, 31, pp.69–74. 33. Bokobza, L. and Zhang, J., 2012. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. eXPRESS Polymer Letters, 6(7), pp.601–608. 34. Botti, S. et al., 2015. Surface-enhanced Raman spectroscopy characterisation of functionalised multi-walled carbon nanotubes. Physical chemistry chemical physics : PCCP, 17(33), pp.21373–80. 35. Branca, C., Frusteri, F., Magazù, V., Mangione, A. 2004. Characterization of Carbon Nanotubes by TEM and Infrared Spectroscopy. The Journal of Physical Chemistry B, 108(11), pp.3469–3473. 36. Burghard, K.B. and M., 2005. Chemically functionalized carbon nanotubes. Small, 1(2), pp.180–192. 37. Burghard, M., 2005. Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 58(1), pp.1–109. 38. Calkins, J.O., Umasankar, Y., O'Neill, H., Ramasamy, R.P., 2013. High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy & Environmental Science, 6(6), p.1891. 39. Cañas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E.H., Olszyk, D., 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9), p.1922. 40. Canete-Rosales, P., Ortega, V., Alvarez-Lueje, A., Bollo, S., Gonzalez, M., Anson, A., Martnez, M.T., 2012. Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochimica Acta, 62, pp.163–171. 41. Carlos, A.Á-O., Pablo, G-M., Carlos, J., Espinoza-González, Juan, G., Martínez-Colunga, M., Guadalupe, N-V., Aidé, S-G., Lluvia, I., 2013. Syntheses and Applications of Carbon Nanotubes and Their Composites S. Suzuki, ed., InTech. 42. Casper, B.B. and Jackson, R.B., 1997. Plant competition underground. Annual Review of Ecology and Systematics, 28(1), pp.545–570. 43. Changmei, L., Chaoying, Z., Junqiang, W., Guorong, W., Mingxuan, T., 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21(3), pp.168–171. 44. Chen, B.-M., Wang, Z-H., Li, S-X., Wang, G-X., Song, H-X., Wang, X-N., 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 167(3), pp.635–643. 45. Chen, G., Guo, S., Kronzucker, H.J., Shi, W., 2013. Nitrogen use efficiency (NUE) in rice links to NH4 + toxicity and futile NH4 + cycling in roots. Plant and Soil, 369(1–2), pp.351–363. 46. Chen, H. and Yada, R., 2011. Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology, 22(11), pp.585–594. 47. Chen, J., Rao, A.M., Lyuksyutov, S., Itkis, M.E., Hamon, M.A., Hu, H., Cohn, R.W., Eklund, P.C., Colbert, D.T., Smalley, R.E., Haddon, R.C., 2001. Dissolution of Full-Length Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 105(13), pp.2525–2528. 48. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C., 1998. Solution properties of single-walled carbon nanotubes. Science (New York, N.Y.), 282(5386), pp.95–8. 49. Chen, L., Zhou, L., Liu, Y., Deng, S., Wu, H., Wang, G., 2012. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicology and environmental safety, 84, pp.155–62. 50. Cheng, H. and Cheng, J., 2005. The aggregation of single-walled carbon nanotubes in fresh water and sea water. J Soc. Toxicol., 84, p.9. 51. Chengteh Lee, Eric A. Stahlberg, G.F., 1995. Chemical Structure of Urea in Water. Journal of Physical Chemistry, 99(50), pp.17737–17741. 52. Coleman, K.S., Bailey, S.R., Fogden, S., Green, M.L.H., 2003. Functionalization of single-walled carbon nanotubes via the Bingel reaction. Journal of the American Chemical Society, 125(29), pp.8722–3. 53. Collins, P.G. and Avouris, P., 2000. Nanotubes for electronics. Scientific American, 283(6), pp.62–9. 54. De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L. A., Wang, Q., Ma, X., Hamdi, H., White, J. C., 2013. Multiwalled Carbon Nanotubes and C 60 Fullerenes Differentially Impact the Accumulation of Weathered Pesticides in Four Agricultural Plants. Environmental Science & Technology, 47(21), pp.12539–12547. 55. Di Crescenzo, A., Ettorre, V., Fontana, A., 2014. Non-covalent and reversible functionalization of carbon nanotubes. Beilstein journal of nanotechnology, 5(1), pp.1675–90. 56. Cui, Z., Chen, X., Zhang, F., 2010. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. Ambio, 39(5–6), pp.376–84. 57. Datta, S.K. De, 1981. Principles and Practices of Rice Production, Int. Rice Res. Inst. 58. Davoren, M.,Herzog, E., Casey, A., Cottineau, B., Chambers, G., Byrne, H.J., Lyng, F.M., 2007. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in vitro : an international journal published in association with BIBRA, 21(3), pp.438–48. 59. Deepak Srivastava, C.W., 2003. Nanomechanics of carbon nanotubes and composites. Applied Mechanical Revolution, 56(2), pp.219–227. 60. Di, H.J. and Cameron, K.C., 2002. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64(3), pp.237–256. 61. Dobermann, A., 2005. Nitrogen Use Efficiency - State of the Art, Available at: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1319&context=agronomyfacpub [Accessed January 5, 2016]. 62. Dong, Z., Wu, L., Chai, J., Zhu, Y., Chen, Y., Zhu, Y., 2015. Effects of Nitrogen Application Rates on Rice Grain Yield, Nitrogen-Use Efficiency, and Water Quality in Paddy Field. Communications in Soil Science and Plant Analysis, 46(12), pp.1579–1594. 63. Dresselhaus, M.S., Dresselhaus, G., Avouris, P., 2001. Carbon Nanotubes, Berlin, Heidelberg: Springer Berlin Heidelberg. 64. Duesberg, G.S., Loa, I., Burghard, M., Syassen, K., Roth, S., 2000. Polarized raman spectroscopy on isolated single-wall carbon nanotubes. Physical review letters, 85(25), pp.5436–9. 65. Elsanhoty, R.M., Al-Turki, I.A. and Ramadan, M.F., 2012. Screening of medium components by Plackett–Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Industrial Crops and Products, 36(1), pp.313–320. 66. Epstein, E., 1972. Mineral nutrition of plants: principles and perspectives. 67. Fageria, N.K. and Baligar, V.C., 2005. Enhancing Nitrogen Use Efficiency in Crop Plants. Advances in Agronomy, 88, pp.97–185. 68. Fageria, N.K. and Baligar, V.C., 2007. Lowland rice respond to nitrogen fertilization. Communications in Soil Science and Plant Analysis, 32(9–10), pp.1405–1429. 69. Fakhri, A., 2014. Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles. Journal of Saudi Chemical Society, 18(4), pp.340–347. 70. Falvo, M.R., Clary, G. J., Taylor, R. M., Chi, V., Brooks, F. P., Washburn, S., Superfine, R 1997. Bending and buckling of carbon nanotubes under large strain. Nature, 389(6651), pp.582–584. 71. Fan, X., Fan, X., Xie, D., Chen, J., Lu, H., Xu, Y., Ma, C., Xu, Guohua 2014. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant science : an international journal of experimental plant biology, 227, pp.1–11. 72. Fiorito, S., Serafino, A., Andreola, F., Togna, A., Togna, G. 2006. Toxicity and Biocompatibility of Carbon Nanoparticles. Journal of Nanoscience and Nanotechnology, 6(3), pp.591–599. 73. Fritsch, H. and Jung, J., 1984. Enzyme Activities and Leaf Constituents in Barley Seedlings at Different Nutrient Levels. Zeitschrift für Pflanzenphysiologie, 114(5), pp.433–442. 74. Frost, R.L., Kristof, J., Rintoul, L., Kloprogge, J. T., 2000. Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 56A(9), pp.1681–91. 75. Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science (New York, N.Y.), 320(5878), pp.889–92. 76. Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C., Yang, P., 2006. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biological trace element research, 111(1–3), pp.239–53. 77. Garcia, M.; Forbe, T.; Gonzalez, E., 2010. Potential applications of nanotechnology in the agro-food sector. Cienc. Technol. Aliment, 30, pp.573–581. 78. García-Gutiérrez, M.C., Ruiz, N.A., Hernández, J.J., Rueda, D.R.., Ezquerra, T.A., 2007. X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites. Optica Pura y Aplicada, 40(2), pp.195–205. 79. Gastal, F., 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 53(370), pp.789–799. 80. Georgakilas, V., Demeslis, A., Ntararas, E., Kouloumpis, A., Dimos, K., Gournis, D., Kocman, M., Otyepka, M., Zbořil, R., 2015. Hydrophilic Nanotube Supported Graphene-Water Dispersible Carbon Superstructure with Excellent Conductivity. Advanced Functional Materials, 25(10), pp.1481–1487. 81. Ghodake, G., Seo, Y.D., Park, D., Lee, D.S., 2010. Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. , 5, pp.157–160. 82. Ghormade, V., Deshpande, M.V., Paknikar, K.M., 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology advances, 29(6), pp.792–803. 83. Giraldo, J.P., Landry, M.P., Faltermeier, Sean M., McNicholas, T.P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., Strano, M. S., 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13(4), pp.400–408. 84. Glass, A.D.M., 2003. Nitrogen Use Efficiency of Crop Plants: Physiological Constraints upon Nitrogen Absorption. Critical reviews in plant sciences, 22(5), pp 453-470. 85. Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H. A., 2010. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), pp.1252–1261. 86. González-Melendi, P., Fernández-Pacheco, R., Coronado, M. J., Corredor, E., Testillano, P.S., Risueño, M. C., Marquina, C., Ibarra, M. R., Rubiales, D., Pérez-de-Luque, A., 2008. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Annals of botany, 101(1), pp.187–95. 87. Gorban, A.N., Smirnova, E. V., Tyukina, T. a., 2010. Correlations, risk and crisis: From physiology to finance. Physica A: Statistical Mechanics and its Applications, 389(16), pp.3193–3217. 88. Goyanes, S. Rubiolo, G.R., Salazar, A., Jimeno, A., Corcuera, M.A., Mondragon, I., 2007. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond and Related Materials, 16(2), pp.412–417. 89. Grant, C., 2005. No Title Policy aspects related to the use of enhanced-efficiency fertilizers: Viewpoint of the scientific community. 90. Gundlach, C. ed., 2007. Current Scientific and Industrial Reality: Proceedings of the TRIZ-Future Conference 2007 ; Frankfurt, Germany, November, 6th - 8th, 2007, kassel university press GmbH. 91. Guo, S. and Wang, E., 2007. Synthesis and electrochemical applications of gold nanoparticles. Analytica chimica acta, 598(2), pp.181–92. 92. Guosheng C., Junlang Q., Yan L., Ruifen J., Siying C., Yuan L., Fang Z., Feng Z., Tiangang, L., Gangfeng, O., 2015. Carbon Nanotubes Act as Contaminant Carriers and Translocate within Plants. Scientific Reports, 5(15682). 93. Gupta, N., Gupta, A.K., Gaur, V. S., Kumar, A., 2012. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs. TheScientificWorldJournal, 2012, p.625731. 94. Guryanov, I., Toma, F. M., Montellano López, A., Carraro, M., Da Ros, T., Angelini, G., D'Aurizio, E., Fontana, A., Maggini, M., Prato, M., Bonchio, M., 2009. Microwave-assisted functionalization of carbon nanostructures in ionic liquids. Chemistry (Weinheim an der Bergstrasse, Germany), 15(46), pp.12837–45. 95. Haber-Bosch, 1999. The Haber Process, Available at: http://www.chemguide.co.uk/physical/equilibria/haber.html. 96. Harris, P.J.F. and Harris, P.J.F., 2001. Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge University Press. 97. Hashim, M.M.,Yusop, M. K., Othman, R., Wahid, S. A., 2015. Characterization of Nitrogen Uptake Pattern in Malaysian Rice MR219 at Different Growth Stages Using 15N Isotope. Rice Science, 22(5), pp.250–254. 98. Hatch, D.J., 2004. Controlling Nitrogen Flows and Losses, Wageningen Academic Pub. 99. Heffer, P. and Prud’homme, M., 2013. Fertilizer outlook 2013-2017. 2013., 100. Helland, A., Wick, P., Koehler, A., Schmid, K., Som, C., 2007. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental health perspectives, 115(8), pp.1125–31. 101. Heller, D.A., Baik, S., Eurell, T. E., Strano, M. S., 2005. Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors. Advanced Materials, 17(23), pp.2793–2799. 102. Henry, H.D., Joly, J.O., 1895. Ascent of Sape. Philosophical Transactions of the Royal Society of London. B., 186, pp.563–576. 103. Hiura, H., Ebbesen, T.W., Tanigaki, K., 1995. Opening and purification of carbon nanotubes in high yields. Advanced Materials, 7(3), pp.275–276. 104. Hoccart, X. and Turrell, G., 1993. Raman spectroscopic investigation of the dynamics of urea–water complexes. The Journal of Chemical Physics, 99(11), p.8498. 105. Hossain, M.D., Monreal, C. M., Sayari, A. H., 2010. Effects of Nitrogen , Phosphorus and Potassium Levels on Kenaf ( Hibiscus cannabinus L . ) Growth and Photosynthesis under Nutrient Solution. Journal of Agricultural Science, 2(2), pp.49–57. 106. Hu, H., Zhao, B., Itkis, M. E., Haddon, R. C., 2003. Nitric Acid Purification of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 107(50), pp.13838–13842. 107. Hyung, H., Fortner, J.D., Hughes, J.B., Kim, J.H., 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental science & technology, 41, p.179. 108. Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348), pp.56–58. 109. In-Yup J., D.W.C.N.A.K. and J.-B.B., 2011. Carbon Nanotubes - Polymer Nanocomposites S. Yellampalli, ed., InTech. 110. Jaisi, D.P., Saleh, N. B., Blake, R. E., Elimelech, M., 2008. Transport of Single-Walled Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility. Environmental Science & Technology, 42(22), pp.8317–8323. 111. Jaykaran, S., Deepak, Y., Preeti, Kantharia, N. D, 2011. Nonsignificant P values cannot prove null hypothesis: Absence of evidence is not evidence of absence. Journal of pharmacy & bioallied sciences, 3(3), pp.465–6. 112. Jin, H., Heller, D. A, Sharma, R., Strano, M. S., 2009. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS nano, 3(1), pp.149–58. 113. Jin, H., Heller, D.A., Strano, M.S., 2008. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano letters, 8(6), pp.1577–85. 114. Jones, C., 2011. Nutrient uptake timing by crops. Montana State University Extension. 115. Jones, C.A., 2007. Management of Urea Fertilizer to Minimize Volatilization. Montana State University Extension. 116. Jones, C., Olson-Rutz, K. and Dinkins, C.P., 2011. Nutrient uptake timing by crops to assist with fertilizing decisions. Montana State University Extension., (June). 117. Junejo, N., Musa, M. H., Yusop, M. K., Wan Yunus, W.M.Z., 2009. Effect of Cu and palm stearin coatings on the thermal behavior and ammonia volatilization loss of urea. Research Journal of Agriculture & Biological Sciences. 118. Juraimi, A.S., Saiful, M.A.H., Begum, M., Anuar, A.R., Azmi, M., 2009. Influence of Flooding Intensity and Duration on Rice Growth and Yield. Pertanika journal of tropical agricultural science, 32(2), pp.195–208. 119. Ramesh Reddy, R.D.D., 2008. Biogeochemistry of Wetlands: Science and Applications, CRC Press. 120. Kam, N.W.S., O'Connell, M., Wisdom, J. A., Dai, H., 2005. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America, 102(33), pp.11600–5. 121. Kam, N.W.S. and Dai, H., 2005. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. Journal of the American Chemical Society, 127(16), pp.6021–6. 122. Kar, P. and Choudhury, A., 2013. Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors and Actuators B: Chemical, 183, pp.25–33. 123. Kasaliwal, G.R., Pegel, S., Göldel, A., Pötschke, P., Heinrich, G., 2010. Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer, 51(12), pp.2708–2720. 124. Kathyayini N. and Roopa Reddy, N.R., 2015. A review on protein functionalized carbon nanotubes. Journal of Applied Biomaterials and Functional Materials, 13(4), pp.e301–e301. 125. Khanif, Y.M., 1992. Ammonia volatilization from Malaysian soils following application of urea. Pertanika, 15(2), pp.115–120. 126. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., Biris, A.S., 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano, 3(10), pp.3221–3227. 127. Khodakovskaya, M., de Silva, K., Biris, A.S.,Dervishi, E., Villagarcia, H., 2012. Retraction notice for: Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS nano, 6(8), p.7541. 128. Khodakovskaya, M., Kim, B-S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., Cernigla, C. E., 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small (Weinheim an der Bergstrasse, Germany), 9(1), pp.115–23. 129. Khodakovskaya, M., Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., Biris, A. S., 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano, 6(3), pp.2128–35. 130. Khodakovskaya, M., de Silva, K., Nedosekin, D. A., Dervishi, E., Biris, A.S., Shashkov, E.V., Galanzha, E.I., Zharov, V. P., 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences of the United States of America, 108(3), pp.1028–33. 131. Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W., 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, pp.64–70. 132. Khush, G.S., 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant molecular biology, 59(1), pp.1–6. 133. Kirchhausen, T., 2000. Three ways to make a vesicle. Nature reviews. Molecular cell biology, 1(3), pp.187–198. 134. Klumpp, C., Kostarelos, K. Prato, M., Bianco, A., 2006. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et biophysica acta, 1758(3), pp.404–12. 135. Kole, C., Kole, P., Randunu, K M., Choudhary, P., Podila, R., Ke, Pu C., Rao, A. M., Marcus, R.K., 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC biotechnology, 13(1), p.37. 136. Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., Stahl, D. A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), pp.543–6. 137. Krätschmer, W., Lamb, L. D., Fostiropoulos, K., Huffman, D. R. 1990. Solid C60: a new form of carbon. Nature, 347(6291), pp.354–358. 138. Kroto, H.W., Heath, J. R., O'Brien, S. C., Curl, R. F., Smalley, R. E. 1985. C60: Buckminsterfullerene. Nature, 318(6042), pp.162–163. 139. Lee, K.M., Li, L., Dai, L., 2005. Asymmetric end-functionalization of multi-walled carbon nanotubes. Journal of the American Chemical Society, 127(12), pp.4122–3. 140. Lee, Y. and Geckeler, K.E., 2010. Carbon nanotubes in the biological interphase: the relevance of noncovalence. Advanced materials (Deerfield Beach, Fla.), 22(36), pp.4076–83. 141. Leung, B., 2016. FESEM. Available at: http://sml.hkbu.edu.hk/fesem.html. 142. Li, Z.-Z., Chen, J-F. Liu, F., Liu, A-Q., Wang, Q., Sun, H-Y., Wen, L-X., 2007. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest management science, 63(3), pp.241–6. 143. Lili, F., Yunhe, W., Xiwen, S., Yanqiu, G., Zhichun, W., Yun, M.J.L., 2012. Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline-alkali soil. J. of Food, Agric. & Environ., 10(1), pp.558–562. 144. Lin, D. and Xing, B., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental pollution (Barking, Essex : 1987), 150(2), pp.243–50. 145. Lincoln T.E.Z., 2006. Plant Physiology 4th ed., Sinauer Associates. 146. Lin-Vien, D., Colthup, N. B., Fateley, W. G., Grasselli, J. G. 1991. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Elsevier. 147. Liu, J., Zhang, Y.D., Zhang, Z.M., 2009. The Application Research of Nano-biotechnology to Promote Increasing of Vegetable Production. Hubei Agricultural Sciences, 48, pp.123–127. 148. Liu, J., Zhang, Y.D., Zhang, Z.M., 2008. Study on Application of Nanometer Biotechnology on the Yield and Quality of Winter Wheat. J. of Anhui Agriculture Science, 35, pp.15578–15580. 149. Liu, J. and Zhang, Z., 2012. Environment-friendly carbon-nano synergistic complex fertilizers. 150. Liu, C.-H., Li, J-J., Zhang, H-L., Li, B-R., Guo, Y., 2008. Structure dependent interaction between organic dyes and carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314, pp.9–12. 151. Liu, C.-W., Sung, Y., Chen, B-C., Lai, H-Y., 2014. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). International journal of environmental research and public health, 11(4), pp.4427–40. 152. Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., Fang, X., 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano letters, 9(3), pp.1007–10. 153. Liu, Q., Zhao, Y., Wan, Y., Zheng, J., Zhang, X., Wang, C., Fang, X., Lin, J., 2010. Study of the Inhibitory Effect of Water- Soluble Fullerenes on Plant Growth at the Cellular Level. ACS Nano, 4(10), pp.5743–5748. 154. Liu, Y.J., Lu, A.X., Cao, Q.M., 2007. Effects of composite nanomaterials on rice growth. Plant Nutrit. Fertil. Sci., 13, pp.344–347. 155. Lobell, D.B., Ortiz-Monasterio, J.I., Asner, G.P., 2004. Relative importance of soil and climate variability for nitrogen management in irrigated wheat. Field Crops Research, 87(2–3), pp.155–165. 156. Low, P.S. and Chandra, S., 1994. Endocytosis in Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 45(1), pp.609–631. 157. Lu, C.M., Zhang, C.Y., Wen, J.Q., 2002. Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism. , 21, pp.168–172. 158. Lu, J., Choi, E., Tamanoi, F., Zink, J. I,, 2008. Light-activated nanoimpeller-controlled drug release in cancer cells. Small (Weinheim an der Bergstrasse, Germany), 4(4), pp.421–6. 159. Lu, W., Senapati, D., Wang, S., Tovmachenko, O., Singh, A.K., Yu, H., Ray, P., Chandra., 2010. Effect of Surface Coating on the Toxicity of Silver Nanomaterials on Human Skin Keratinocytes. Chemical physics letters, 487(1–3). 160. Lulu M., Amelia H. C. H., Sehmus O., Robert, V. and Pulickel, .M.A., 2014. Spiers Memorial Lecture Advances of carbon nanomaterials. Faraday Discussions, 173, pp.9–46. 161. Ma, J., Liu, J., Zhang, Z.M., 2009. Application Study of Carbon Nano-fertilizer on Growth of Winter Wheat. Humic acid, 2, pp.14–20. 162. Maene, L.M., 1995. Of The 45th Annual Meeting Fertilizer Industry Roundtable, 163. Mahendra R., Caue R., Luiz M., N.D. ed., 2015. Nanotechnologies in Food and Agriculture, Springer. 164. Manivannan,M. and Rajendran, S., 2011. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. International Journal of Engineering Science and Technology, 3(11), pp.8048–8060. 165. Marschner, H., 1988. Book Reviews. Plant, Cell and Environment, 11(2), pp.147–148. 166. Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., Suzuki, A., 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of botany, 105(7), pp.1141–57. 167. Mayra G., Jacques R., Quintana P.B.P., Ferlent ® a Controlled Release Fertilizer Produced From. In In Vitro. pp. 441–446. 168. Mellersh, D.G. and Heath, M.C., 2003. An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Molecular plant-microbe interactions : MPMI, 16(5), pp.398–404. 169. Melotto, M., Underwood, W., He, S.Y., 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annual review of phytopathology, 46, pp.101–22. 170. Miralles, P., Church, T.L., Harris, A.T., 2012. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants. Environmental science & technology, 46(17), pp.9224–39. 171. Montes-Morán, M.A., Suárez, D., Menéndez, J.A., Fuente, E., 2004. On the nature of basic sites on carbon surfaces: an overview. Carbon, 42(7), pp.1219–1225. 172. Morteza, E., Moaveni, P., Farahani, H.A., Kiyani, M., 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. SpringerPlus, 2(1), p.247. 173. Mosleh, M.K., Hassan, Q.K., Chowdhury, E.H., 2015. Application of remote sensors in mapping rice area and forecasting its production: a review. Sensors (Basel, Switzerland), 15(1), pp.769–91. 174. Mou’ad, A.T. and Sahrim, A., 2013. Syntheses and Applications of Carbon Nanotubes and Their Composites S. Suzuki, ed., InTech. 175. Mowry, M., Dennis, P., Claudia, Luhrs, C., Sebastian, O., 2013. In Situ Raman Spectroscopy and Thermal Analysis of the formation of Nitrogen-doped Graphene from Urea and Graphite Oxide. The Royal Society of Chemistry. 176. Mueller, N.D., Gerber, J. S., Johnston, M., Ray, D.K, Ramankutty, N., Foley, J.A., 2012. Closing yield gaps through nutrient and water management. Nature, 490(7419), pp.254–7. 177. Mukherjee, S., Ghosh, R.N., Maxfield, F.R., 1997. Endocytosis. Physiological reviews, 77(3), pp.759–803. 178. Mundus, S., Menezes, R. S. C., Neergaard, A., Garrido, M. S. 2008. Maize growth and soil nitrogen availability after fertilization with cattle manure and/or gliricidia in semi-arid NE Brazil. Nutrient Cycling in Agroecosystems, 82(1), pp.61–73. 179. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., Kumar, D. S., 2010. Nanoparticulate material delivery to plants. Plant Science, 179(3), pp.154–163. 180. Naseh, M.V., Khodadadi, A., Mortazavi, Y., Sahraei, O., Pourfayaz, F., Sedghi, S.M., 2009. Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma. Int. J. Chem. Biomol. Eng, 2(1), pp.2–2. 181. Neil C.J.R., 2008. Resource Acquisition and Transport in Vascular Plants. In Biology. Pearson Education. 182. Nikolic, O., Zivanovic, T., Jelic, M., Djalovic, I., 2012. Interrelationships between Grain Nitrogen Content and other Indicators of Nitrogen Accumulation and Utilization Efficiency in Wheat Plants. Chilean journal of agricultural research, 72(1), pp.111–116. 183. Nur Izreen, F.A., Zaidon, A., Adawiah, M.A. Rabia`tol, Bakar, E.S., Paridah, M.T., Hamami, S. M., 2011. Enhancing the Properties of Low Density Hardwood Dyera costulata Through Impregnation with Phenolic Resin Admixed with Formaldehyde Scavenger. Journal of Applied Sciences, 11(20), pp.3474–3481. 184. Oberlin, A., Endo, M., Koyama, T., 1976. Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32(3), pp.335–349. 185. Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J-P., Prato, M., Kostarelos, K., Bianco, A., 2004. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angewandte Chemie (International ed. in English), 43(39), pp.5242–6. 186. Panyam, J. and Labhasetwar, V., 2003. {B}iodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), pp.329–347. 187. Parry, M.A.J., Flexas, J., Medrano, H., 2005. Prospects for crop production under drought: research priorities and future directions. Annals of Applied Biology, 147(3), pp.211–226. 188. Pasuquin, J.M., Saenong, S., Tan, P.S., Witt, C., Fisher, M.J., 2012. Evaluating N management strategies for hybrid maize in Southeast Asia. Field Crops Research, 134, pp.153–157. 189. Patlolla, A., Knighten, B., Tchounwou, P., 2010. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn, 20, pp.1–17. 190. Pérez-de-Luque, A. and Rubiales, D., 2009. Nanotechnology for parasitic plant control. Pest management science, 65(5), pp.540–5. 191. Peter J. L., Jean-François, Morot-Gaudry ed., 2001. Plant Nitrogen, Springer Science & Business Media. 192. Pieczonka, N.P.W., R.A., Aroca, R.F., 2008. Single molecule analysis by surfaced-enhanced Raman scattering. Chemical Society reviews, 37(946–954). 193. Pogodin, S. and Baulin, V.A., 2010. Can a carbon nanotube pierce through a phospholipid bilayer? ACS nano, 4(9), pp.5293–300. 194. Pogodin, S., Slater, N.K.H., Baulin, V.A., 2011. Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer. ACS nano, 5(2), pp.1141–6. 195. Poland, C., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.H., Seaton, A., Stone, V., Brown, S., Mac Nee, W., Donaldson, K., 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like phatogenicity in a pilot study. Nature nanotechnology, 3, pp.423–428. 196. Powers, K.W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., Roberts, S. M., 2006. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological sciences : an official journal of the Society of Toxicology, 90(2), pp.296–303. 197. Puskás, R., Kukovecz, Á. & Konya, Z., 2013. Effects of carbon nanotube functionalization on the agglomeration and sintering of supported Pd nanoparticles. Adsorption, 19(2), pp.501–508. 198. Qian, Y.F., Shao, C.H., Qiu, C.F., Chen, X.M., Li, S.L., Zuo, W.D., Peng, C.R., 2010. Primarily Study of the Effects of Nanometer Carbon Fertilizer Synergist on the Late Rice. Acta Agriculturae Boreali-Sinica. 199. Qian F., Gisela W., D.-S.S., 2008. Selective filling of carbon nanotubes with metals by selective washing. New Carbon Materials, 23(1), pp.17–20. 200. Queiroz, D.P., de Pinho, M.N., Dias, C., 2003. ATR−FTIR Studies of Poly(propylene oxide)/Polybutadiene Bi-Soft Segment Urethane/Urea Membranes. Macromolecules, 36(11), pp.4195–4200. 201. Ramanathan, T., Fisher, F. T., Ruoff, R. S., Catherine B., L., 2008. Apparent Enhanced Solubility of Single-Wall Carbon Nanotubes in a Deuterated Acid Mixture. Research Letters in Nanotechnology, 2008(Dlm), pp.1–4. 202. Rashidi, L. and Khosravi-Darani, K., 2011. The applications of nanotechnology in food industry. Critical reviews in food science and nutrition, 51(8), pp.723–30. 203. Ray, S.S., 2013. Environmentally Friendly Polymer Nanocomposites: Types, Processing and Properties, Elsevier Science. 204. Rebelo, S.L.H., Guedes, A., Lipińska, M. E., Pereira, A. M., Araujo, J. P., Freire, C., 2016. Progresses on the Raman spectra analysis of covalently functionalized multiwall carbon nanotubes: unraveling disorder on graphitic materials. Phys. Chem. Chem. Phys. 205. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., Gardea-Torresdey, Jorge, L 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry, 59(8), pp.3485–98. 206. Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M, C., Jetten, M. S. M., Op den Camp, H. J. M., Derksen, J. W. M., Piña-Ochoa, E., Eriksson, S. P., Nielsen, L. P., 207. Revsbech, N. P., Cedhagen, T., van der Zwaan, G. J., 2006. Evidence for complete denitrification in a benthic foraminifer. Nature, 443(7107), pp.93–6. 208. Roco, M.C., 2003. Nanotechnology: convergence with modern biology and medicine. Current Opinion in Biotechnology, 14(3), pp.337–346. 209. Roggatz, U., McDonald, A. J. S., Stadenbeg, I., Schurr, U. 1999. Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L. Plant, Cell and Environment, 22(1), pp.81–89. 210. Samaj, J., 2012. Endocytosis in Plants, Springer Science & Business Media. 211. Sarah L. G., Kim D., Thériault, A.M. Oickle, A.C., Tarasuk, H.A.A., 2010. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), pp.1252–1261. 212. Sayes, C.M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, Jonathan M., Moore, V. C., Doyle, C. D., West, J. L., Billups, W. E., Ausman, K. D., Colvin, V. L. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology Letters, 161(2), pp.135–142. 213. Secil, S. and Cevdet, .K., 2013. Using various techniques to characterize oxidative functionalized and aminosilanized carbon nanotubes for polyamide matrix. Journal of Reinforced Plastics and Composites, 32(2), pp.75–86. 214. Semeena, V.S., 2005. The significance of the grasshopper effect on the atmospheric distribution of persistent organic substances. Geophysical Research Letters, 32(7), p.L07804. 215. Serag, M.F., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., Tokeshi, M., Mizukami, H., Bianco, A., Baba, Y., 2011. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano, 5(1), pp.493–499. 216. Sharma, A., Kumar, S., Tripathi, B., Singh, M., Vijay, Y.K., 2009. Aligned CNT/Polymer nanocomposite membranes for hydrogen separation. International Journal of Hydrogen Energy, 34(9), pp.3977–3982. 217. Sharon, M., Choudhary, A., Kumar, R., 2010. Nanotechnology in agricultural diseasesd and food safety. J. Phytol., 2, pp.83–92. 218. Shaviv, N.J., 2005. On climate response to changes in the cosmic ray flux and radiative budget. Journal of Geophysical Research, 110(A8), p.A08105. 219. Shen, C.-X., Zhang, Q-F., Li, J., Bi, F-C., Yao, N., 2010. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. American journal of botany, 97(10), pp.1602–9. 220. Shivaram, 2012. Fourier Transform Infrared Spectroscopy. Available at: http://www.slideshare.net/shivadheeraj/ftir. 221. Siddiqui, M.H. and Al-Whaibi, M.H., 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi journal of biological sciences, 21(1), pp.13–7. 222. Singh, Avtar, J. S., Kang, M.K., Ashu, G., 2013. Root parameters, weeds, economics and productivity of wheat (Triticum aestivum L.) as affected by methods of planting in situ paddy straw. International Journal of Current Microbiology and Applied Sciences, 2(10), pp.396–405. 223. Singh, B.- , Bronson, K.F., Singh, Yadvinder-Khera, T.S., Pasuquin, E., 2001. Nitrogen-15 balance as affected by rice straw management in a rice-wheat rotation in northwest India. Nutrient Cycling in Agroecosystems, 59(3), pp.227–237. 224. Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., Prato, M., 2009. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chemical Society reviews, 38(8), pp.2214–30. 225. Sitthaphanit, S., Bell, R.W., Limpinuntana, V., 2010. Effect of clay amendments on nitrogen leaching and forms in a sandy soil. 226. Skoog, D.A., Holler, F.J., Crouch, S.R., 2007. Principles of Instrumental Analysis 6th edition. 227. Sozer, N. and Kokini, J.L., 2009. Nanotechnology and its applications in the food sector. Trends in biotechnology, 27(2), pp.82–9. 228. Srilatha, B., 2011. Nanotechnology in Agriculture. Journal of Nanomedicine & Nanotechnology, 2(7). 229. Stein, M., Dittgen, J., Sánchez-Rodríguez, C., Hou, B-H., Molina, A., Schulze-Lefert, P., Lipka, V., Somerville, S., 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. The Plant cell, 18(3), pp.731–46. 230. Stowe, R.A. and Mayer, R.P., 2002. Efficient screening of process variables. 231. Sun, Y., 2013. Comparison and combination of near-infrared and Raman spectra for PLS and NAS quantitation of glucose, urea and lactate. University of Iowa. 232. Syrgiannis, Z., Bonasera, A., Tenori, E., La Parola, V., Hadad, C., Gruttadauria, M Giacalone, F., Prato, M., 2015. Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale, 7(14), pp.6007–13. 233. Szleifer, I. and Yerushalmi-Rozen, R., 2005. Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer, 46(19), pp.7803–7818. 234. Tabirsir, 2010. X-Ray Diffraction Technique. Available at: http://www.slideshare.net/tabirsir/xray-diffraction-technique. 235. Tan, X., Lin, C., Fugetsu, B., 2009. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 47(15), pp.3479–3487. 236. Tan, X.-M. and Fugetsu, B., 2007. Multi-Walled Carbon Nanotubes Interact with Cultured Rice Cells: Evidence of a Self-Defense Response. Journal of Biomedical Nanotechnology, 3(3), pp.285–288. 237. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., 2006. Chemistry of carbon nanotubes. Chemical reviews, 106(3), pp.1105–36. 238. Tayefe, M., Akif, G. A., Zade, E., Nasrollah, A., 2014. Effect of nitrogen fertilizing management on rice grain quality, dry matter production and yield parameters. African Journal of Biotechnology, 13(1), pp.91–105. 239. Terry N., Waldron L.J., T.S.E., 1983. Environmental influences on leaf expansion. In The Growth and Functioning of Leaves J. E. D. & F. L. Milthorpe, ed., Cambridge University Press, Cambridge. 240. Thanh, N.T., Xuan, N., The, N., Hong, P., Ngoc, P., 2008. Analyzing the Purity of Carbon Nanotubes by Using Di erent Methods. JJour te Korea Physical Society, 52(5), pp.1382–1385. 241. Thomas, S.M., Thorne, G.N., Pearman, I., 1978. Effect of Nitrogen on Growth, Yield and Photorespiratory Activity in Spring Wheat. Ann. Bot., 42(4), pp.827–837. 242. Timothy, W. and Joe, E., 2003. Rice Fertilization, 243. Tiwari, D.K., Dasgupta-Schubert, N., Villaseñor Cendejas, L. M., Villegas, J., Carreto Montoya, L., Borjas García, S. E., 2013. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 4(5), pp.577–591. 244. Torney, F., Trewyn, B.G., Lin, V.S-Y., Wang, K., 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature nanotechnology, 2(5), pp.295–300. 245. Trenkel, M.E., 2010. Slow and Controlled released and Stabilized Fertilizer An Option for Enhancing Nitrogen Use Efficiency in Agriculture 2nd Edition. 246. Tripathi, S., Sonkar, S.K., Sarkar, S., 2011. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 3(3), pp.1176–81. 247. Tsang, S.C., Chen, Y. K., Harris, P. J. F., Green, M. L. H., 1994. A simple chemical method of opening and filling carbon nanotubes. Nature, 372(6502), pp.159–162. 248. Tsang, S.C., Harris, P.J.F., Green, M.L.H., 1993. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 362(6420), pp.520–522. 249. Tsuji, K., 2001. Microencapsulation of pesticides and their improved handling safety. Journal of microencapsulation, 18(2), pp.137–47. 250. Turner, C.L. and Knapp, A.K., 1996. Responses of a C 4 Grass and Three C 3 Forbs to Variation in Nitrogen and Light in Tallgrass Prairie. Ecology, 77(6), p.1738. 251. Vijayakumar, P.S., Abhilash, O.U., Khan, B.M., Prasad, B.L.V., 2010. Nanogold-Loaded Sharp-Edged Carbon Bullets as Plant-Gene Carriers. Advanced Functional Materials, 20(15), pp.2416–2423. 252. Wahab, A.G., 2016. Grain and Feed Annual, Available at: http://gain.fas.usda.gov/Recent GAIN Publications/Grain and Feed Annual_Kuala Lumpur_Malaysia_2-26-2016.pdf. 253. Wang, J. and Pui, D.Y.H., 2013. Dispersion and Filtration of Carbon Nanotubes (CNTs) and Measurement of Nanoparticle Agglomerates in Diesel Exhaust. Chemical engineering science, 85, pp.69–76. 254. Wang, Z., Shirley, M.D., Meikle, S.T., Whitby, R.L.D., Mikhalovsky, S.V., 2009. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 47(1), pp.73–79. 255. Weise, S.E., Weber, A.P.M., Sharkey, T.D., 2004. Maltose is the major form of carbon exported from the chloroplast at night. Planta, 218(3), pp.474–82. 256. Wick, P., Manser, P., Limbach, L., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W., Bruinink, A., 2007. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letter, 168, pp.121–131. 257. Wilson, M.A., Tran, N.H., Milev, A.S., Kannangara, G.S.K., Volk, H., Lu, G.Q.M., 2008. Nanomaterials in soils. Geoderma, 146(1–2), pp.291–302. 258. Wu, M.-Y., 2013. Effects of Incorporation of Nano-carbon into Slow-released Fertilizer on Rice Yield and Nitrogen Loss in Surface Water of Paddy Soil. In 2013 Third International Conference on Intelligent System Design and Engineering Applications. IEEE, pp. 676–681. 259. Xiao, Q., Zhang, S.Q., Zhang, D.F., Wang, Y.J., Z.J.F., 2008. Effects of slow/controlled release fertilizers felted and coated by nanomaterials on crop yield and quality. Plant Nutrition and Fertilizer Science, 5, pp.951–955. 260. Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F., Yang, P., 2007. The Improvement of Spinach Growth by Nano-anatase TiO2 Treatment Is Related to Nitrogen Photoreduction. Biological Trace Element Research, 119(1), pp.77–88. 261. Yang, K. and Ma, Y.-Q., 2010. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature nanotechnology, 5(8), pp.579–83. 262. Yao, N., Lordi, V., Ma, S. X. C., Dujardin, E., Krishnan, A., Treacy, M. M. J., Ebbesen, T.W., 2011. Structure and Oxidation Patterns of Carbon Nanotubes. Journal of Materials Research, 13(9), pp.2432–2437. 263. Yao W., Jun W., F.W., 2003. A treat method to give separated MWNTs with high purity, high crystallization and a large aspect ratio. carbon, 41, pp.2939–2948. 264. Yaron, P.N., Holt, B.D., Short, P., Lösche, M., Islam, M.F., Dahl, K., 2011. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. Journal of Nanobiotechnology, 9(1), p.45. 265. Yildirim, T., Gülseren, O., Kılıç, Ç., Ciraci, S., 2000. Pressure-induced interlinking of carbon nanotubes. Physical Review B, 62(19), pp.12648–12651. 266. Ying-Hua, D., Ya-Li, Z., Shen, Q-R., Song-Wei, W., 2006. Nitrate Effect on Rice Growth and Nitrogen Absorption and Assimilation at Different Growth Stages. Pedosphere, 16(6), pp.707–717. 267. Yoshida, A., Kaburagi, Y., Hishiyama, Y., 2006. Full Width at Half Maximum Intensity of the G Band in the First Order Rama Spectrum of Carbon Material as a Parameter for Graphitization. carbon, 44, pp.2330–2335. 268. Yu, P., McKinnon, J.J., Christensen, C.R., Christensen, D.A., 2004. Imaging molecular chemistry of Pioneer corn. Journal of agricultural and food chemistry, 52(24), pp.7345–52. 269. Yue, Z.R., Jiang, W., Wang, L., Gardner, S.D., Pittman, C.U., 1999. Surface characterization of electrochemically oxidized carbon fibers. Carbon, 37(11), pp.1785–1796. 270. Yun, B.-W., Atkinson, H.A., Gaborit, C., Greenland, A., Read, N.D., Pallas, J.A., Loake, G.J., 2003. Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. The Plant Journal, 34(6), pp.768–777. 271. Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., Huczko, A., 2004. Studies of multiwall carbon nanotubes using Raman s pectroscopy and atomic force microscopy. Solide state phenomena, 99, p.265. 272. Zhang, J., 2015. Crop management options to reduce nitrogen pollution in Liangzihu lake basin , Central China Inaugural Dissertation. 273. Zhang, Y.-J., Zhou, Y-R., Du, B., Yang, J-C., 2008. Effects of Nitrogen Nutrition on Grain Yield of Upland and Paddy Rice Under Different Cultivation Methods. Acta Agronomica Sinica, 34(6), pp.1005–1013. 274. Zhao, Y., Allen, B.L., Star, A., 2011. Enzymatic Degradation of Multiwalled Carbon Nanotubes. Journal of Physical Chemistry, 115(34), pp.9536–9544. 275. Zharov, V.P., Galitovskaya, E.N., Johnson, C., Kelly, T., 2005. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers in surgery and medicine, 37(3), pp.219–26. 276. Zheng, L., Hong, F., Lu, S., Liu, C., 2005. Effect of Nano-TiO<SUB>2</SUB> on Strength of Naturally Aged Seeds and Growth of Spinach. Biological Trace Element Research, 104(1), pp.083–092. 277. Zhou, W., Sasaki, S., Kawasaki, A., 2014. Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon, 78, pp.121–129. 278. Ziegler, K.J., Gu, Z., Peng, H., Flor, E.L., Hauge, R.H., Smalley, R.E., 2005. Controlled oxidative cutting of single-walled carbon nanotubes. Journal of the American Chemical Society, 127(5), pp.1541–7. 279. Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P., Somerville, S., 2004. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. The Plant journal : for cell and molecular biology, 40(5), pp.633–46. 280. Zou, J., Liu, L., Chen, H., Khondaker, S.I., McCullough, R.D., 2008. Dispersion of Pristine Carbon Nanotubes Using Conjugated Block Copolymers. Advanced Materials, 20(11), pp.2055–2060.