Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)

Research and development of brain detection and diagnosis system for brain disorder based on Magnetic Resonance Imaging (MRI) have become one of the most common interest in the past few years. Out of various MRI techniques, Diffusion-Weighted Imaging (DWI) remains the most accurate technique for ear...

Full description

Saved in:
Bibliographic Details
Main Author: Muda, Ayuni Fateeha
Format: Thesis
Language:English
English
Published: 2016
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/20544/1/Brain%20Lesion%20Segmentation%20And%20Classification%20Using%20Diffusion-Weighted%20Imaging%20%28DWI%29.pdf
http://eprints.utem.edu.my/id/eprint/20544/2/Brain%20Lesion%20Segmentation%20And%20Classification%20Using%20Diffusion-Weighted%20Imaging%20%28DWI%29.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.20544
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Mohd Saad, Norhashimah

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Muda, Ayuni Fateeha
Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)
description Research and development of brain detection and diagnosis system for brain disorder based on Magnetic Resonance Imaging (MRI) have become one of the most common interest in the past few years. Out of various MRI techniques, Diffusion-Weighted Imaging (DWI) remains the most accurate technique for early detection and discrimination of several brain lesions such as stroke. This study proposed the image analysis technique for automatically segmenting and classifying abnormal lesion structures from DWI. Four lesions namely acute stroke, chronic stroke, solid tumor and necrosis were analyzed. The proposed analysis framework were pre-processing, segmentation, features extraction and classification. Four different segmentation techniques were proposed based on Thresholding with Morphological Operation (TMO), Fuzzy C-Means (FCM), Fuzzy C-Means with Active Contour (FCMAC) and Fuzzy C-Means with Correlation Template (FCMCT) to segment the lesion’s region. Next, the statistical parameters from spatial and wavelet transforms were extracted from the Region of Interest (ROI) as features. These features were classified using a rule-based classifier for automatic classification. The results indicate that FCMCT offered the best performance for Jaccard Index, Dice Index, False Positive Rate and False Negative Rate which were 0.6, 0.73, 0.19 and 0.2 respectively. The overall accuracy, sensitivity and specificity for the classification were 89 %, 86 % and 96 %. In conclusion, the proposed hybrid analysis has the potential to be explored as a computer-aided tool to detect and diagnose of human brain lesion.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Muda, Ayuni Fateeha
author_facet Muda, Ayuni Fateeha
author_sort Muda, Ayuni Fateeha
title Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)
title_short Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)
title_full Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)
title_fullStr Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)
title_full_unstemmed Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)
title_sort brain lesion segmentation and classification using diffusion-weighted imaging (dwi)
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Electronic And Computer Engineering
publishDate 2016
url http://eprints.utem.edu.my/id/eprint/20544/1/Brain%20Lesion%20Segmentation%20And%20Classification%20Using%20Diffusion-Weighted%20Imaging%20%28DWI%29.pdf
http://eprints.utem.edu.my/id/eprint/20544/2/Brain%20Lesion%20Segmentation%20And%20Classification%20Using%20Diffusion-Weighted%20Imaging%20%28DWI%29.pdf
_version_ 1747833979056160768
spelling my-utem-ep.205442021-10-08T16:35:57Z Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI) 2016 Muda, Ayuni Fateeha T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Research and development of brain detection and diagnosis system for brain disorder based on Magnetic Resonance Imaging (MRI) have become one of the most common interest in the past few years. Out of various MRI techniques, Diffusion-Weighted Imaging (DWI) remains the most accurate technique for early detection and discrimination of several brain lesions such as stroke. This study proposed the image analysis technique for automatically segmenting and classifying abnormal lesion structures from DWI. Four lesions namely acute stroke, chronic stroke, solid tumor and necrosis were analyzed. The proposed analysis framework were pre-processing, segmentation, features extraction and classification. Four different segmentation techniques were proposed based on Thresholding with Morphological Operation (TMO), Fuzzy C-Means (FCM), Fuzzy C-Means with Active Contour (FCMAC) and Fuzzy C-Means with Correlation Template (FCMCT) to segment the lesion’s region. Next, the statistical parameters from spatial and wavelet transforms were extracted from the Region of Interest (ROI) as features. These features were classified using a rule-based classifier for automatic classification. The results indicate that FCMCT offered the best performance for Jaccard Index, Dice Index, False Positive Rate and False Negative Rate which were 0.6, 0.73, 0.19 and 0.2 respectively. The overall accuracy, sensitivity and specificity for the classification were 89 %, 86 % and 96 %. In conclusion, the proposed hybrid analysis has the potential to be explored as a computer-aided tool to detect and diagnose of human brain lesion. 2016 Thesis http://eprints.utem.edu.my/id/eprint/20544/ http://eprints.utem.edu.my/id/eprint/20544/1/Brain%20Lesion%20Segmentation%20And%20Classification%20Using%20Diffusion-Weighted%20Imaging%20%28DWI%29.pdf text en public http://eprints.utem.edu.my/id/eprint/20544/2/Brain%20Lesion%20Segmentation%20And%20Classification%20Using%20Diffusion-Weighted%20Imaging%20%28DWI%29.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=105836 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Electronic And Computer Engineering Mohd Saad, Norhashimah 1. Adalsteinsson, D. and Sethian, J., 1995. A Fast Level Set Method for Propagating Interfaces. Journal of Computational Physics, 118(2), pp.269-277. 2. Adams, R. and Bischof, L., 1994. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), pp.641-647.. 3. Addison, P., 2002. The illustrated wavelet transform handbook. Bristol, UK: Institute of Physics Pub. 4. Adhikari, S., Sing, J., Basu, D., Nasipuri, M. and Saha, P., 2012. Segmentation of MRI brain images by incorporating intensity inhomogeneity and spatial information using probabilistic fuzzy c-means clustering algorithm. Communications, Devices and Intelligent Systems (CODIS), pp.129-132. 5. Afonso, D. and Mascarenhas, V., 2015. Imaging techniques for the diagnosis of soft tissue tumors. RMI, p.63. 6. Ahirwar, A., 2013. Study of techniques used for medical image segmentation and computation of statistical test for region classification of brain MRI. International Journal of Information Technology and Computer Science (IJITCS), 5(5), p.44. 7. Bodnarova, A., Williams, J.A., Bennamoun, M. and Kubik, K.K., 1997, December. Optimal textural features for flaw detection in textile materials. In TENCON'97. IEEE 8. Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications., Proceedings of IEEE(Vol. 1, pp. 307-310). IEEE. 9. Ahirwar, A. and Jadon, R., 2013. Effectiveness of Soft Computing Techniques for Medical Imaging. Computational Intelligence and Communication Networks (CICN), 2013 5th International Conference, pp.336-338. 10. Ahmed, M., Yamany, S., Mohamed, N., Farag, A. and Moriarty, T., 2002. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 21(3), pp.193-199. 11. Ajala Funmilo, A., Oke, O., Adedeji, T., Alade, O. and Adewusi, E., 2012. Fuzzy k-c- means Clustering Algorithm for Medical Image Segmentation. Journal of information engineering and applications, 2(6). 12. American Cancer Society (2009). Cancer Facts & Figures 2009. Available at: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2019/index retrieved 2015-02-20 13. Ananth, K. and Pannirselvam, S., 2012. A Geodesic Active Contour Level Set Method for Image Segmentation. International Journal of Image, GAraphics and Signal Processing, 4(5), pp.31-37. 14. Andersen, A., Zhang, Z., Avison, M. and Gash, D., 2002. Automated segmentation of multispectral brain MR images. Journal of Neuroscience Methods, 122(1), pp.13-23. 15. Atkins, M. and Mackiewich, B., 1998. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1), pp.98-107. 16. Balafar, M., Ramli, A., Saripan, M. and Mashohor, S., 2010. Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33(3), pp.261-274. 17. Bandhyopadhya, S. and paul., T., 2012. Segmentation of Brain MR Image-A Review. International Journal Advanced Research in Computer Science and Software Engineering, 2(3). 18. Bankman, I., 2009. Handbook of medical image processing and analysis. Amsterdam: Elsevier/Academic Press. 19. Bankman, I., 2000. Handbook of medical imaging. San Diego, CA: Academic Press. 20. Barnathan, M., Zhang, J. and Miranda, E., 2008. A Texture-Based Methodology for Identifying Tissue Type in Magnetic Resonance Image. IEEE International SYMposium on Biomedical Imaging (ISBI): From nano to macro, pp.464-467. 21. Bezdek, J., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Boston, MA: Springer US. 22. Bhanu Prakash, K., Gupta, V. & Nowinski, W. L., 2010. Segmenting Infarct from Diffusion-Weighted Imaging Volume. U.S. Patent No. US2010/0231216 A1. U.S. Patent and Trademark Office. 23. Bhanu Prakash, K., Gupta, V., Bilello, M., Beauchamp, N. J. & Nowinski, W. L., 2006. Identification, segmentation, and image property study of acute infarcts in diffusion- weighted images by using a probabilistic neural network and adaptive gaussian mixture model, Academic Radiology, 13: 1474-1484. 24. Bianchi, A., Miller, J., Tan, E. and Montillo, A., 2013 . Brain tumor segmentation with symmetric texture and symmetric intensity-based decision forests. Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on, pp.748-751. 25. bioc.aecom., 2012. MRI sequences. [online] Available at: http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/COURSE_2012/chapter5.pdf [Accessed 6 Jan. 2016]. 26. Bitar, R. 2006. MR Pulse Sequences: What Every Radiologist Wants to Know but Is Afraid to Ask. RadioGraphics, 26: 513-537. 27. Buades, A., Coll, B. and Morel, J., 2005. A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition. Computer Society Conference, 2, pp.60-65 28. Bushong, S., 2003. Magnetic resonance imaging. St. Louis, Mo.: Mosby. 29. Campbell, N., Reece, J., Taylor, M., Simon, E. and Dickey, J., 2009. Biology: concepts & Connections. 6th ed. Pearson/Benjamin Cumming Cárdenes, R., de Luis-García, R. and Bach-Cuadra, M., 2009. A multidimensional segmentation evaluation for medical image data. Computer Methods and Programs in Biomedicine, 96(2), pp.108-124. 30. Catté, F., Lions, P., Morel, J. and Coll, T., 1992. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. SIAM Journal on Numerical Analysis, 29(1), pp.182- 193. 31. Cha, S., 2005. Update on brain tumor imaging. Current Neurology and Neuroscience Reports, 5(3), pp.169-177. 32. Chack, S. and Sharma, P., 2015. An Improved Region Based Active Contour model for Medical Image Segmentation. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(1), pp.115-124. 33. Chalela, J. A., Kidwell, C. S., Nentwich, L. M., Luby, M., Butman, J. A., Demchuk, A. M., Hill, M. D., Patronas, N., Latour, L. & Warach, S., 2007. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. The Lancet, 369: 293-298. 34. Chen, L., Bentle., P. and Rueckert, D., 2015. A Novel Framework for Sub-Acute Stroke Lesion Segmentation Based on Random Forest. Ischemic Stroke Lesion Segmentation, p. 9. 35. Christ, 2011. Segmentation of Medical Image using Clustering and Watershed Algorithms. American Journal of Applied Sciences, 8(12), pp.1349-1352. 36. Chuang, K., Tzeng, H., Chen, S., Wu, J. and Chen, T., 2006. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30(1), pp.9-15. 37. Correction: Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation., 2015. PLOS ONE, 10(6), p.e0132081 38. Cremers, D., Reid, I., Saito, H. and Yang, M. (n.d.). Computer vision -- ACCV 2014. 39. David, R., Daan, C., Jamaki, R., Jaap, G. and Philip, J. 2015: A voxel-wise, cascaded classification approach to stroke lesion segmentation. Ischemic Stroke Lesion Segmentation, p. 25. 40. De Haan, B., Clas. P., Juenger. H., Wilke. M. and Karnath. H.O., 2015. Fast semi- automated lesion demarcation in stroke. NeuroImage: Clinical. 41. Deepty, M., s, T. and Sadashivappa, G., 2014. Brain tumor segmentation using thresholding, morphological operation and extraction of features of tumors. Advances in electronics, computers and communications. International conference (ICAECC), pp.1-6. 42. Deli, I. and Çağman, N., 2015. Intuitionistic fuzzy parameterized soft set theory and its decision making. Applied Soft Computing, 28, pp.109-113. 43. Despotović, I., Goossens, B. and Philips, W., 2015. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications. Computational and Mathematical Methods in Medicine, 2015, pp.1-23. 44. Dhanalakshmi, P. and Kanimozhi, T., 2013. Automatic segmentation of brain tumor using K-Means clustering and its area calculation. International Journal of advanced electrical and Electronics Engineering 2, (2), pp.130-134. 45. Dokur, Z., 2008. A unified framework for image compression and segmentation by using an incremental neural network. Expert Systems with Applications, 34(1), pp.611-619. 46. Downs, S., 2011. The graphic communication handbook. Abingdon, Oxon [England]: Routledge. 47. Dubey, R. and Gupta, S., 2009. Region growing for MRI brain tumor volume analysis. Indian Journal of Science and Technology, 2(9), pp.26-31. 48. Duda, R. O., Hart, P. E. & Stork, D. G. 2012. Pattern classification. John Wiley & Sons. 49. Dutil, F., Havei, H., Pal, C., Larochelle, H. and Jodoin, P. 2015. A Convolutional Neural Network Approach to Brain Lesion Segmentation, Ischemic Stroke Lesion Segmentation, p. 51. 50. El-Dashan, E. –S. A., Mohsen, H. M., Revett, K. & Salem, A-B. M., 2014. Computer- aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert System with applications, 41: 5526-5545. 51. Fabijańska, A., Węgliński, T., Zakrzewski, K. and Nowosławska, E., 2014. Assessment of hydrocephalus in children based on digital image processing and analysis. International Journal of Applied Mathematics and Computer Science, 24(2). 52. Gajanayake, G., Yapa, R. and Hewawithana, B., 2009. Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images. Industrial and Information Systems (ICIIS),International Conference on IEEE, pp.301-305. 53. Geman, S. and Geman, D., 1984. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), pp.721-741 54. Girja Sahu, Ms., Lalitkumar, Mr., Bhaiya, P., 2015. Classification of MRI Brain images using GLCM, Neural Network, Fuzzy Logic Genetic Algorithm. International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), Volume 3 Issue 6. ISSN: 2321-8169, PP: 3498 - 3504 55. Goldberg-Zimring, D., Achiron, A., Miron, S., Faibel, M. and Azhari, H., 1998. Automated Detection and Characterization of Multiple Sclerosis Lesions in Brain MR Images. Magnetic Resonance Imaging, 16(3), pp.311-318. 56. Gonzales, R. C. & Woods, R. E. 2002. Digital Image Processing, 2nd Edition. Prentice Hall. 57. Güler, İ., Demirhan, A. and Karakış, R., 2009. Interpretation of MR images using self- organizing maps and knowledge-based expert systems. Digital Signal Processing, 19(4), pp.668-677. 58. Haacke, E., Brown, R., Thompson, M. and Venkatesan, R., 2014. Magnetic resonance imaging. New York [u.a.]: Wiley-Liss. 59. Hadjiprocopis, A., Rashid, W. and Tofts, P., 2005. Unbiased segmentation of diffusion- weighted magnetic resonance images of the brain using iterative clustering. Magnetic Resonance Imaging, 23(8), pp.877-885. 60. Hammer, M. and Wechsler, L., 2008. Neuroimaging in Ischemia and Infarction. Seminars in Neurology, 28(04), pp.446-452. 61. Haralick, R., Shanmugam, K. and Dinstein, I., 1973. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), pp.610-621. 62. Harris, C. and Stephens, M., 1988. A Combined Corner and Edge Detector. In: AlveyVision Conference. Proc. Of 4th AlveyVision Conference, pp.147-151. 63. Hashemi, R., Bradley, W. and Lisanti, C., 2010. MRI. Philadelphia, PA: Lippincott Williams & Wilkins. 64. Heena, H. and Tripti, S., 2014. Brain Tumor Segmentation: A Performance Analysis Using K-Means , Fuzzy C-Means and Region Growing algorithm. In Advanced Communication Control and Computing Technologies (ICACCCT), pp.1621-1626. 65. Hevia-Montiel, N., Jimenez-Alaniz, J. R., Medina-Banuelos, V., Yanez-Suarez, O., Rosso, C., Samson, Y. & Baillet, S., 2007. Robust nonparametric segmentation of infarct lesion from diffusion-weighted MR images. 29th Annual International IEEE Conference of the Engineering in Medicine and Biology Society, EMBS 2007, 2102-2105. 66. Holdsworth, S. and Bammer, R., 2008. Magnetic Resonance Imaging Techniques: fMRI, DWI, and PWI. Seminars in Neurology, 28(04), pp.395-406. 67. Howarth, P. and Rüger,, S., 2004. Image and Video Retrieval. Berlin, Heidelberg: Springer,pp.326-324. 68. Hsieh, T., Liu, Y., Liao, C., Xiao, F., Chiang, I. and Wong, J., 2011. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak, 11(1), p.54. 69. Hsu. L. 2005. MR imaging of the central nervous system. Minimally Invasive Neurosurgery. Human Press Inc, Totowa, NJ. 70. Hum, Y., 2013. Segmentation of hand bone for bone age assessment. Singapore: Springer. 71. Humayun, J., malik, A. and Kamel, N., 2011. Multilevel thresholding for segmentation of pigmented skin lesions. In: lesions. IEEE International Conference on Imaging Systems and Techniques (IST 2011). pp.310-314. 72. Hunt, R. and Pointer, M., 2011. Measuring colour. Hoboken, NJ: Wiley. 73. Hussain, S., Savithri, T. and Devi, P., 2012. Segmentation of Tissues in Brain MRI Images using Dynamic Neuro-Fuzzy Technique. International Journal of Soft computing and Engineering,, 1(6), pp.2231-2307. 74. Ibrahim, S., Khalid, N.E.A. and Manaf, M., 2010. Seed-based region growing (SBRG) vs adaptive network-based inference system (ANFIS) vs fuzzy c-means (FCM): brain abnormalities segmentation. International Journal of Electrical and Computer Engineering, 5(2), pp.94-104. 75. Islam, A., Reza, S. and Iftekharuddin, K., 2013. Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors. IEEE Transactions on Biomedical Engineering, 60(11), pp.3204-3215. 76. It Has nothing to do with Age (2012). Available at: http://ithasnothingtodowithage.blogspot.com/2012/12/birthdays-and-humanadvantage.html?m=0retrieved 2014-02-08 77. Jansen, O., 2003. Advances in Brain Tumour Imaging. Journal of Clinical Neuroradiology. 78. Jiawei, H., 2011. Data Mining: Concepts and Techniques: Concepts and Techniques. Morgan Kaufmann Publishers, pp.36=50-361. 79. Jin Liu, Min Li, Wang, J., Fangxiang Wu, Liu, T. and Yi Pan., 2014. A survey of MRI- based brain tumor segmentation methods. Tinshhua Sci. Technol., 19(6), pp.578-595. 80. Johnson, S., 1967. Hierarchical clustering schemes. Psychometrika, 32(3), pp.241-254. 81. Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D. and Glocker, B. 2015. Multi-Scale 3D Convolutional Neural Networks for Lesion Segmentation in Brain MRI. Ischemic Stroke Lesion Segmentation, p. 13. 82. Kannan, S., Pandiyarajan, R. and Ramathilagam, S., 2010. Effective weighted bias fuzzy C-means in segmentation of brain MRI. Intelligent and Advanced Systems (ICIAS), 2010 International Conference, pp.1-6. 83. Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N., 2012. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), pp.21-57. 84. Kassner, A. and Thornhill, R., 2010. Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 31(5), pp.809-816. 85. Kastrup, O., Wanke, I. and Maschke, M., 2008. Neuroimaging of Infections of the Central Nervous System. Seminars in Neurology, 28(04), pp.511-522. 86. Kazerooni, A.F., Ahmadian, A., Serej, N.D., Rad, H.S., Saberi, H., Yousefi, H. and Farnia, P., 2011, August. Segmentation of brain tumors in MRI images using multi-scale gradient vector flow. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 7973-7976). IEEE. 87. Khalid, N.E.A., Ibrahim, S. and Manaf, M., 2011, July. Brain abnormalities segmentation performances contrasting: adaptive network-based fuzzy inference system (ANFIS) vs K- nearest neighbors (k-NN) vs Fuzzy C-Means (FCM). In 15th WSEAS International Conference on Computers (pp. 15-17). 88. Khan, S. and Ahmad, A., 2004. Cluster center initialization algorithm for K-means clustering. Pattern Recognition Letters, 25(11), pp.1293-1302. 89. Khan, W., 2014. Image Segmentation Techniques: A Survey. Journal of Image and Graphics, pp.166-170. 90. Koh, D. and Padhani, A., 2006. Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. The British Journal of Radiology, 79(944), pp.633-635. 91. Kwon, M., Han, Y., park, H. and Shin, I., 2003. Segmentation of Brain MR Image Using Template Matching and Hierarchical Fuzzy C-means Algorithm. International Society for Magnetic Resonance in Medicine (ISMRM). 92. Li, N., Liu, M. and Li, Y., 2007. Image segmentation algorithm using watershed transform and level set method. In: Acoustics, Speech and Signal Processing, 2007. ICASSP. IEEE International Conference, p.I-613. 93. Li, S., 1995. Markov random field modeling in computer vision. New York: Springer- Verlag. 94. Lin, G.-C., Wang, W.-J., Kang, C.-C. & Wang, C.-M. 2012. Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magnetic Resonance Imaging, 30: 230-246. 95. Liu, T., Li, H., Wong, K., Tarokh, A., Guo, L. and Wong, S., 2007. Brain tissue segmentation based on DTI data. NeuroImage, 38(1), pp.114-123. 96. Llad´o, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls, L., Rami´o-Torrent`a, L., Rovira, A., 2012. : Segmentation of multiple sclerosis lesions in ` brain MRI: a review of automated approaches. Information Sciences 186(1), 164– 185. 97. Lu. C., Wang. P., Chou. Y., Li. H., Soong. B. and Wu. T., 2008. A Brain images segmentation of head MR images segmentation method based on SOM neural network. In: Engineering in Medicine and Biology Society,EMBS. 30th Annual International Conference of the IEEE, pp.5502-5505. 98. Luna, A., Ribes, R. and Soto, J., 2012. Diffusion MRI outside the brain. Heidelberg: Springer-Verlag Berlin Heidelberg. 99. MAGNETOM Maestro Class., 2010. Diffusion Weighted MRI of the Brain. Siemens Medical Solutions that help. 100. Magnets, Spins, and Resonance; An introduction to the basics of magnetic resonance. Siemens Medical Solution that help. Brochure. 101. Mahmood, Q. and Basit, A. 2015. Automatic Ischemic Stroke Lesion Segmentation in Multi-Spectral MRI images using Random Forests Classifier. Ischemic Stroke Lesion Segmentation, p. 43. 102. Mahmoodabadi, S., Alirezaie, J., Babyn, P., Kassner, A. and Widjaja, E., 2011. Wavelets and fuzzy relational classifiers: A novel diffusion-weighted image analysis system for pediatric metabolic brain diseases. Computer Methods and Programs in Biomedicine, 103(2), pp.74-86. 103. Makela, T., Clarysse, P., Sipila, O., Pauna, N., Quoc Cuong Pham, Katila, T. and Magnin, I., 2002. A review of cardiac image registration methods. IEEE Transactions on Medical Imaging, 21(9), pp.1011-1021. 104. Maksimovic, R., Stankovic, S. and Milovanovic, D., 2000. Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models — ‘snakes’. International Journal of Medical Informatics, 58-59, pp.29-37. 105. Malaysian Cancer Statistics., 2009. Data and Figure Peninsular Malaysia 2009, National Cancer Registry,Ministry of Health, Malaysia. 106. Manju, D., Seetha, M. and Venugopala Rao, K., 2013. Comparison Study of Segmentation Techniques for Brain Tumour Detection. International Journal of Computer Science and Mobile Computing, 2(11), pp.261-269. 107. Martel, A. L., Allder, S. J., Delay, G. S., Morgan, P. S. & Moody, A. R. 1999. Measurement of infarct volume in stroke patients using adaptive segmentation of diffusion weighted MR images. Medical Image Computing and Computer-Assisted Intervention– MICCAI’99, Springer, 22-31. 108. Max Wintermark, Michael D. Wirt, Pratik Mukherjee, Greg Zaharchuk, Emmanuel Barbier, William P. Dillon, Birgit B. Ertl-Wagner, Claudia Rummeny, Marco Essig, Daryl 109. C. Bergen, John M. Fagnou, Robert Sevick, E. Turgut Tali, Serap Gültekin, Sasan Karimi, Andrei I. Holodny, Mitsunori, K., Noriko Sato, Yukio Miki, Norbert Hosten, B. Zwicker, Mathias Langer, Roberto Maroldi, D. Farina, Andrea Borghesi, Elisa Botturi, Claudia Ambrosi, Hilda Stambuk & Fischbein, N. 2008. Brain, Head, and Neck. In: Reiser, M. F., Semmler, W. & Hricak, H. (eds.). Magnetic Resonance Tomography. Springer. 110. Mikheev, A., Nevsky, G., Govindan, S., Grossman, R. and Rusinek, H., 2008. Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J. Magn. Reson. Imaging, 27(6), pp.1235-1241. 111. Mikulka, J., Burget, R., Riha, K. and Gescheidtova, E., 2013. Segmentation of brain tumor parts in magnetic resonance images. InTelecommunications and Signal Processing (TSP), 2013 36th International Conference on, pp.565-568. 112. Ministry Of Health Malaysia. Health Facts 2012. Available at: http://medicine.com.my/wp/2013/04/health-facts-malaysia-2012/retrived 2015-01-29 113. Moon, N., Bullitt, E., Van Leemput, K. and Gerig, G., 2002. Automatic brain and tumor segmentation. In: Medical Image Computing and Computer-Assisted Intervention- MICCAI 2002. Berlin: Medical Image Computing and Computer-Assisted Intervention- MICCAI 2002, pp.372-379. 114. Moritani, T., Ekholm, S. and Westesson, P., 2009. Diffusion-Weighted MR Imaging of the Brain. American Journal of Neuroradiology, 31(1), pp.R3-R3. 115. Mujumdar, S., Sivaswamy, J., Kishore, L.T. and Varma, R., 2013, March. Auto- windowing of ischemic stroke lesions in diffusion weighted imaging of the brain. In Medical Informatics and Telemedicine (ICMIT), 2013 Indian Conference on (pp. 1-6). IEEE. 116. Mujumdar, S., 2013. Detection and Segmentation of Stroke Lesions from Diffusion Weighted MRI Data of the Brain. International Institute of Information Technology Hyderabad. Master Thesis. 117. Mujumdar, S., Sivaswamy, J., Kishore, L. and Varma, R., 2016. Auto-windowing of ischemic stroke lesions in diffusion weighted imaging of the brain. Medical Informatics and Telemedicine (ICMIT), pp.1-6. 118. Mukherji, S., Chenevert, T. and Castillo, M., 2008. State of the Art: Diffusion-Weighted MR imaging Techniques: fMRI, DWI, and PWI. Seminars in Neurology, 28(4). 119. Nadal Desbarats, L., Herlidou, S., De Marco, G., Gondry-Jouet, C., Le Gars, D., Deramond, H. & Idy-Peretti, I. 2003. Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparentdiffusion coefficient and normalized diffusion-weighted images. Magnetic Resonance Imaging, 21: 645-650. 120. Niogi. S.N., Tsiouris. A. J., 2014. Neuroimaging in Clinical Trials. Medical Imaging in Clinical Trials, Springer. 121. Norhashimah, M.S., 2015. Automated brain lesion classification method for diffusion- weighted magnetic resonance images . Universiti Teknologi Malaysia. Doctoral dissertation, UTM. 122. Ortiz, A., Gorriz, J., Ramirez, J. & Salas-Gonzalez, D. 2012. Unsupervised neural techniques applied to MR brain image segmentation. Advances in Artificial Neural Systems, 1-7. 123. Oskar, M., Wilms. M. and Handels, H. 2015. Random forests with selected features for stroke lesion segmentation. Ischemic Stroke Lesion Segmentation, p. 17. 124. Padma Nanthagopal, A. and Sukanesh, R., 2013. Wavelet statistical texture features-based segmentation and classification of brain computed tomography images. IET Image Processing, 7(1), pp.25-32. 125. Park, J. and Lee, C., 2009. Skull stripping based on region growing for magnetic resonance brain images. NeuroImage, 47(4), pp.1394-1407. 126. Pass, G. and Zabih, R., 1999. Comparing images using joint histograms. Multimedia Systems, 7(3), pp.234-240. 127. Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. 128. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), pp.629-639. 129. Pimtongngam, Y., Intharakham, K. and Suwanprasert, K., 2013, October. Classification of nitric oxide assessed by hybrid kernel function in lacunar stroke. In Biomedical Engineering International Conference (BMEiCON), 2013 6th (pp. 1-5). IEEE. 130. Pohle, R. and Toennies, K., 2010. segmentation of medical images using adaptive region growing. In: proceeding of SPIE medical imaging. medical imaging, pp.1337-1356. 131. Prakash, B., Gupta. K. and Nowinski, W. L. 2010. Segmenting Infarct from Diffusion- Weighted Imaging Volume. U.S. Patent No. US2010/0231216 A1. U.S. Patent and Trademark Office, 2010. 132. Pratt, W. K. 2007. Digital Image Processing. John Wiley & Sons, Inc. 133. Prem, N., Nikhil, K., Sandeep Kankre, N., Nancy, S. and Pratap Singh, B., 2012. tumor detection using threshold operation in MRI brain images'. In: In Computational Intelligence & Computing Research (ICCIC). IEEE International Conference, pp.1-4. 134. Rakesh, M. and Ravi, T., 2012. Image Segmentation and Detection of Tumor Objects in MR Brain Images Using FUZZY C-MEANS (FCM) Algorithm. International Journal of Engineering Research and Applications, 2(3), pp.2088-2094. 135. Ramírez, J., Górriz, J., Salas-Gonzalez, D., Romero, A., López, M., Álvarez, I. and Gómez-Río, M., 2013. Computer-aided diagnosis of Alzheimer’s type dementia combining support vector machines and discriminant set of features. Information Sciences, 237, pp.59-72. 136. Rana, R. and Bhadauria, H., 2013. A. Study of Various Methods for Brain Tumour Segmentation from MRI Images. 137. Reza, M., S., Pei, Lai. and Iftekharudin, K. 2016. Ischemic Stroke Lesion Segmentation Using Local Gradient and Texture FeaturesIschemic Stroke Lesion Segmentation, p. 21, 2016. 138. Rohlfing, T., Brandt, R., Menzel, R. and Maurer, C., 2004. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage, 21(4), pp.1428-1442. 58a). 139. Roslan, R., Jamil, N. and Mahmud, R., 2010, November. Skull stripping of MRI brain images using mathematical morphology. In Biomedical Engineering and Sciences (IECBES), 2010 IEEE EMBS Conference on (pp. 26-31). IEEE. 140. Rumpf, M. and Preusser, T., 2002. A Level Set Method for Anisotropic Geometric Diffusion in 3D Image Processing. SIAM J. Appl. Math., 62(5), pp.1772-1793. 141. Saad, N.M. and Abdullah, A.R., 2012. Automated region growing for segmentation of brain lesion in diffusion-weighted MRI. 142. Saad, N.M., Abu-Bakar, S.A.R., Muda, S. and Mokji, M., 2010. Automated segmentation of brain lesion based on diffusion-weighted MRI using a split and merge approach. In Biomedical engineering and sciences (IECBES), 2010 IEEE EMBS conference on (pp. 475-480). IEEE. 143. Saad, N.M., Abu-Bakar, S.A.R., Muda, S. and Mokji, M., 2011. Segmentation of brain lesions in diffusion-weighted MRI using thresholding technique. In Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on (pp. 249-254). IEEE. 144. Saha, I., Maulik, U., Bandyopadhyay, S. and Plewczynski, D., 2010. July. Real-coded differential crisp clustering for MRI brain image segmentation. In Evolutionary Computation (CEC), 2010 IEEE Congress on (pp. 1-8). IEEE. 145. Saraswathy, S., Sharma, S., Shanbhag, D., Patil, U. & Mullick, R., 2009. Automatic identification and segmentation of infarct lesions from diffusion weighted MR images and ADC maps. Proceedings International Society Magnetic Resonance Medicine 2009, 17: 2887. 146. Sarathi, M., Ansari, M., Uher, V., Burget, R. and Dutta, M., 2013. Automated Brain Tumor segmentation using novel feature point detector and seeded region growing. Telecommunications and Signal Processing (TSP) international conference, pp.648-652. 147. Sarica, A., Critelli, C., Guzzi, P.H., Cerasa, A., Quattrone, A. and Cannataro, M., 2013, June. Application of different classification techniques on brain morphological data. In Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Symposium on (pp. 425-428). IEEE. 148. Schaefer. P. W., Grant. P. E., Gonzalez. R. G., 2000. State of the Art: Diffusion-weighted MR imaging of the brain. Annual Meetings of the Radiological Society of North America (RSNA), pp.331–345. 149. Sethian, J., 1996. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4), pp.1591-1595. 150. Shamsi, H. and Seyedarabi, H., 2012. A Modified Fuzzy C-Means Clustering with Spatial Information for Image Segmentation. International Journal of Computer Theory and Engineering IJCTE, pp.762-766. 151. Shasidhar, M., Sudheer Raja, V. and Vijay Kumar, B., 2011. MRI Brain Segmentation Using Modified Fuzzy C-Means Clustering Algorithm. In: International Conference on Communication System and Network Technologies, 2011. 152. Siddiqui, M.F., Reza, A.W. and Kanesan, J., 2015. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification. PloS one, 10(8), p.e0135875. 153. Siemens. 2010. Diffusion Weighted MRI of The Brain. MAGNETOM Maestro Class: Siemens Medical Solutions that help. Brochure. 154. Sijbers, J., den Dekker, A., Van Audekerke, J., Verhoye, M. and Van Dyck, D., 1998. Estimation of the Noise in Magnitude MR Images. Magnetic Resonance Imaging, 16(1), pp.87-90. 155. Singh, P., Bhadauria, H. and Singh, A., 2014. Automatic brain MRI image segmentation using FCM and LSM. In Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions, pp.1-6. 156. Sokolova, M., Lapalme, G. 2009. A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45 (4): 427- 437. 157. Timmons, J., 2016. Primary Brain Tumors-Everything a Medical Student Need To Know. 1(1), pp.31-37. 158. Tirpude, N. & Welekar, R. 2013. Automated Detection and Extraction of Brain Tumor from MRI Images. International Journal of Computer Applications, 77: 26-30. 159. Tortora, G. and Grabowski, S., 2003. Principles of anatomy and physiology. New York: Wiley. 160. Udupa, J., Wei, L., Samarasekera, S., Miki, Y., van Buchem, M. and Grossman, R., 1997. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Transactions on Medical Imaging, 16(5), pp.598-609. 161. Ullrich, R., Kracht, L. and Jacobs, A., 2008. Neuroimaging in Patients with Gliomas. Seminars in Neurology, 28(04), pp.484-494. 162. Vincent, L. and Soille, P., 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), pp.583-598. 163. Vlaardingerbroek, M. and Boer, J., 2003. Magnetic resonance imaging. Berlin: Springer. 164. Wan Ahmad, W. and Ahmad Fauzi, M., 2008. Comparison of Different Feature Extraction techniques in content-based image retrieval for CT brain images. Multimedia Signal Processing, 2008 IEEE, pp.502-508. 165. Wang, B. and Gao, X., 2010. Automatic Image Segmentation Method Using Sequential Level Set. Journal of Software, 20(5), pp.1185-1193. 166. Wang, C., Komodakis, N. and Paragios, N., 2013. Markov Random Field modeling, inference & learning in computer vision & image understanding: A survey. Computer Vision and Image Understanding, 117(11), pp.1610-1627. 167. Wang, J., Kong, J., Lu, Y., Qi, M. and Zhang, B., 2008. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Computerized Medical Imaging and Graphics, 32(8), pp.685-698. 168. Wang, R., Zhu, Y., shen, X., Hui, C. and zhang, s., 2013. Lesion segmentation in acute cerebral infarction based on Dempster-Shafer theory. InWavelet Analysis and Pattern Recognition (ICWAPR), 2013 International Conference, pp.209-214. 169. Weishaupt, D., Köchli, V. D. & Marincek, B. 2006. 7 Basic Pulse Sequences. How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging. 2nd Edition. Springer Berlin Heidelberg 170. Weisstein, E. W. 2014. Pearson Mode Skewness From MathWorld--A Wolfra. Web Resource: http://mathworld.wolfram.com/PearsonModeSkewness.html. 171. Wu, J., Chen, J., Zhang, X. and Chen, J. 2010. The segmentation of brain MR images using Reformative Expectation-Maximization algorithm. Int. J. Image Grap., 10(02), pp.289-297. 172. Yan, M. and Shui, P., 2015. Interactive Image Segmentation Based on Gaussian Mixture Models with Spatial Prior. International Journal of Multimedia and Ubiquitous Engineering, 10(7), pp.105-114. 173. Yang, L., Widyantoro, D.H., Ioerger, T. and Yen, J., 2001. An entropy-based adaptive genetic algorithm for learning classification rules. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on (Vol. 2, pp. 790-796). IEEE. 174. Yu-Li You, Wenyuan Xu, Tannenbaum, A. and Kaveh, M., 1996. Behavioral analysis of anisotropic diffusion in image processing. IEEE Transactions on Image Processing, 5(11), pp.1539-1553. 175. Zanaty, E.A. and Afifi, A., 2013. A New Fuzzy C-Means for Magnetic Resonance Images (MRIs) Segmentation. Journal of Pattern Recognition and Intelligent Systems May, 1(1), pp.1-9. 176. Zhang, J. and Dai, D., 2009. An adaptive spatial clustering method for automatic brain MR image segmentation. Progress in Natural Science, 19(10), pp.1373-1382. 177. Zhang, Y. and Wu, L., 2012. An MR brain images classifier via principal component analysis and kernel support vector machine. Progress In Electromagnetics Research, 130, pp.369-388. 178. Zhao, H., Chan, T., Merriman, B. and Osher, S., 1996. A Variational Level Set Approach to Multiphase Motion. Journal of Computational Physics, 127(1), pp.179-195.