Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film

Piezoelectric energy harvester (PEH) is considered as a robust power source, which can power the electronic devices by scavenging small magnitudes of energy from ambient vibration. The fundamental advantage of PEH lies on the inherent ability of the piezoelectric material to generate electricity dep...

Full description

Saved in:
Bibliographic Details
Main Author: Mat Harttar @ Mohd Hatta, Maziati Akmal
Format: Thesis
Language:English
English
Published: 2017
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/20632/1/Lead-Free%20Piezoelectric%20Energy%20Harvester%20Based%20On%20Optimised%20Potassium%20Sodium%20Niobate%20Thin%20Film.pdf
http://eprints.utem.edu.my/id/eprint/20632/2/Lead-free%20piezoelectric%20energy%20harvester%20based%20on%20optimised%20potassium%20sodium%20niobate%20thin%20film.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.20632
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Abd Rashid, Mohd Warikh
Azlan, Umar Al-Amani
topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Mat Harttar @ Mohd Hatta, Maziati Akmal
Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
description Piezoelectric energy harvester (PEH) is considered as a robust power source, which can power the electronic devices by scavenging small magnitudes of energy from ambient vibration. The fundamental advantage of PEH lies on the inherent ability of the piezoelectric material to generate electricity depending on the amount of vibration applied on the material. Although lead zirconate titanate (PZT) is the most common type of piezoelectric material used, the toxicity of PZT content has damaged the environment and health, in which it necessitates the discovery of lead-free piezoelectric material. Hence, potassium sodium niobate (KNN) is chosen as the potential candidate since good piezoelectric properties can be achieved by compositionally-engineered the perovskite structure. However, the thermal treatment of KNN at high temperature is challenging due to alkali metal cations volatility. In order to address this issue, a series of systematic reviews and a consecutive study on KNN energy harvester was conducted. In the present study, KNN thin films were fabricated via chemical solution deposition method. The effects of the annealing temperature and various number of coating layers on both the structural and electrical properties were looked into in order to find the optimum annealing temperature and coating layers to fabricate KNN thin films. The present study has shown that KNN thin film annealed at 650 °C presented a well-crystallised orthorhombic perovskite structure without the presence of secondary phase which confirmed by X-ray powder diffraction analysis. Crystallinity, molecular vibration, surface morphology, and resistivity were found to depend on the coating layers. Particularly, the optimum properties were found for KNN thin films with five coating layers. In addition, the structural and electrical properties were strongly affected by yttrium doping. All the thin films had a preferred (0 0 1) orientation with formation of pure orthorhombic perovskite structure. Small shift on Raman active mode, together with dense and homogenous surface morphology were obtained for 0.5 mol% yttrium-doped KNN. Besides, 0.5 mol% yttrium-doped KNN had intermediate electrical resistivity (2.153 × 106 Ω.cm), low dielectric loss (0.018 %), high dielectric permittivity (508), and high quality factor (25.730). Next, finite element modelling was performed to determine the resonance frequency of the as-fabricated KNN thin film to generate the optimum voltage and power output. The performance of KNN energy harvester was compared with a commercial lead based material, namely PZT-5H. Both harvesters showed a comparable output power of 0.104 mW and 0.115 mW for KNN and PZT-5H, respectively. Further, energy harvester performance analysis involving finite element modelling and experimental testing recorded a maximum voltage of 0.968 V and a power output of 0.1067 mW, when 0.5 mol% yttrium-doped KNN was resonated at 2098.7 Hz. To compare with pure KNN, 0.5 mol% yttrium-doped KNN exhibited a relatively desirable electromechanical coupling factor about 0.49, which has the potential as an energy harvester to substitute PZT in the future.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Mat Harttar @ Mohd Hatta, Maziati Akmal
author_facet Mat Harttar @ Mohd Hatta, Maziati Akmal
author_sort Mat Harttar @ Mohd Hatta, Maziati Akmal
title Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
title_short Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
title_full Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
title_fullStr Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
title_full_unstemmed Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
title_sort lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Manufacturing Engineering
publishDate 2017
url http://eprints.utem.edu.my/id/eprint/20632/1/Lead-Free%20Piezoelectric%20Energy%20Harvester%20Based%20On%20Optimised%20Potassium%20Sodium%20Niobate%20Thin%20Film.pdf
http://eprints.utem.edu.my/id/eprint/20632/2/Lead-free%20piezoelectric%20energy%20harvester%20based%20on%20optimised%20potassium%20sodium%20niobate%20thin%20film.pdf
_version_ 1747833990253903872
spelling my-utem-ep.206322022-06-03T16:39:47Z Lead-free piezoelectric energy harvester based on optimised potassium sodium niobate thin film 2017 Mat Harttar @ Mohd Hatta, Maziati Akmal T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Piezoelectric energy harvester (PEH) is considered as a robust power source, which can power the electronic devices by scavenging small magnitudes of energy from ambient vibration. The fundamental advantage of PEH lies on the inherent ability of the piezoelectric material to generate electricity depending on the amount of vibration applied on the material. Although lead zirconate titanate (PZT) is the most common type of piezoelectric material used, the toxicity of PZT content has damaged the environment and health, in which it necessitates the discovery of lead-free piezoelectric material. Hence, potassium sodium niobate (KNN) is chosen as the potential candidate since good piezoelectric properties can be achieved by compositionally-engineered the perovskite structure. However, the thermal treatment of KNN at high temperature is challenging due to alkali metal cations volatility. In order to address this issue, a series of systematic reviews and a consecutive study on KNN energy harvester was conducted. In the present study, KNN thin films were fabricated via chemical solution deposition method. The effects of the annealing temperature and various number of coating layers on both the structural and electrical properties were looked into in order to find the optimum annealing temperature and coating layers to fabricate KNN thin films. The present study has shown that KNN thin film annealed at 650 °C presented a well-crystallised orthorhombic perovskite structure without the presence of secondary phase which confirmed by X-ray powder diffraction analysis. Crystallinity, molecular vibration, surface morphology, and resistivity were found to depend on the coating layers. Particularly, the optimum properties were found for KNN thin films with five coating layers. In addition, the structural and electrical properties were strongly affected by yttrium doping. All the thin films had a preferred (0 0 1) orientation with formation of pure orthorhombic perovskite structure. Small shift on Raman active mode, together with dense and homogenous surface morphology were obtained for 0.5 mol% yttrium-doped KNN. Besides, 0.5 mol% yttrium-doped KNN had intermediate electrical resistivity (2.153 × 106 Ω.cm), low dielectric loss (0.018 %), high dielectric permittivity (508), and high quality factor (25.730). Next, finite element modelling was performed to determine the resonance frequency of the as-fabricated KNN thin film to generate the optimum voltage and power output. The performance of KNN energy harvester was compared with a commercial lead based material, namely PZT-5H. Both harvesters showed a comparable output power of 0.104 mW and 0.115 mW for KNN and PZT-5H, respectively. Further, energy harvester performance analysis involving finite element modelling and experimental testing recorded a maximum voltage of 0.968 V and a power output of 0.1067 mW, when 0.5 mol% yttrium-doped KNN was resonated at 2098.7 Hz. To compare with pure KNN, 0.5 mol% yttrium-doped KNN exhibited a relatively desirable electromechanical coupling factor about 0.49, which has the potential as an energy harvester to substitute PZT in the future. 2017 Thesis http://eprints.utem.edu.my/id/eprint/20632/ http://eprints.utem.edu.my/id/eprint/20632/1/Lead-Free%20Piezoelectric%20Energy%20Harvester%20Based%20On%20Optimised%20Potassium%20Sodium%20Niobate%20Thin%20Film.pdf text en public http://eprints.utem.edu.my/id/eprint/20632/2/Lead-free%20piezoelectric%20energy%20harvester%20based%20on%20optimised%20potassium%20sodium%20niobate%20thin%20film.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=107021 phd doctoral Universiti Teknikal Malaysia Melaka Faculty Of Manufacturing Engineering Abd Rashid, Mohd Warikh Azlan, Umar Al-Amani 1. Ahn, C.W., Hwang, H.I., Lee, K.S., Jin, B.M., Park, S., Park, G., Yoon, D., Cheong, H., Lee, H.J., and Kim, I.W., 2010. Raman Spectra Study of K0.5Na0.5NbO3 Ferroelectric Thin Films. Japanese Journal of Applied Physics, 49(9), pp. 1-4. 2. Ahtee, M., and Hewat, A., 1978. Structural Phase Transitions in Sodium.potassium Niobate Solid Solutions by Neutron Powder Diffraction. Acta Crystallographica, 32, pp. 309.317. 3. Ai, Z., Hou, Y., Zheng, M., and Zhu, M., 2014. Effect of Grain Size on the Phase Structure and Electrical Properties of PZT.PNZN Quaternary Systems. Journal of Alloys and Compounds, 617, pp. 222.227. 4. Akl, A. A., 2010. Thermal Annealing Effect on the Crystallization and Optical Dispersion of Sprayed V2O5 Thin Films. Journal of Physics and Chemistry of Solids, 71(3), pp. 223.229. 5. Aksel, E., and Jones, J.L., 2010. Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators. Sensors, 10(3), pp. 1935.1954. 6. Alexopoulos, P.S., and Ofsullivan, T.C., 1996. Annual Review of Materials Science. Annual Review of Materials Science, 219(95), pp. 391.420. 7. An American National Standard on Piezoelectricity, 1988. ANSI/IEEE Std: IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. New York: IEEE. 8. Andosca, R., McDonald, T.G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C., and Wu, J., 2012. Experimental and Theoretical Studies on MEMS Piezoelectric Vibrational Energy Harvesters with Mass Loading. Sensors and Actuators A: Physical, 178, pp. 76.87. 9. Anthony, R., Of Mathuna, C., and Rohan, J.F., 2016. MEMS Based Electrochemical Process for Fabrication of Laminated Micro-Inductors on Silicon. Microelectronic Engineering, 155, pp. 33.38. 10. Arnold, D., 2007. Review of Microscale Magnetic Power Generation. Magnetics, 43(11), pp. 3940.3951. 11. Arroyo, E., Badel, A., Formosa, F., Wu, Y., and Qiu, J., 2012. Comparison of Electromagnetic and Piezoelectric Vibration Energy Harvesters: Model and Experiments. Sensors and Actuators A: Physical, 183, pp. 148.156. 12. Badr, B., Delaney, K.R., and Dechev, N., 2015. Design of a Low Frequency Piezoelectric Energy Harvester for Rodent Telemetry Design of a Low Frequency Piezoelectric Energy Harvester for Rodent Telemetry. Journal of Ferroelectrics, 193, pp. 98.118. 13. Bai, S., Xu, Q., Gu, L., Ma, F., Qin, Y., and Wang, Z.L., 2012. Single Crystalline Lead Zirconate Titanate (PZT) Nano/micro-Wire Based Self-Powered UV Sensor. Nano Energy, 1(6), pp. 789.795. 14. Bastani, Y., and Bassiri-Gharb, N., 2012. Enhanced Dielectric and Piezoelectric Response in PZT Superlattice-like Films by Leveraging Spontaneous Zr/Ti Gradient Formation. Acta Materialia, 60(3), pp. 1346.1352. 15. Bau, M., Ferrari, M., Tonoli, E., and Ferrari, V., 2011. Sensors and Energy Harvesters Based on Piezoelectric Thick Films. Procedia Engineering, 25, pp. 737.744. 16. Beeby, S.P., Tudor, M.J., and White, N.M., 2006. Energy Harvesting Vibration Sources for Microsystems Applications. Measurement Science and Technology, 17(12), pp. 175.195. 17. Bellini, N., Geremia, R., Norval, S., Fichet, G., and Karnakis, D., 2016. Laser Thin Film Patterning for Rapid Prototyping and Customised Production of Flexible Electronics Devices. Journal of Laser Micro/Nanoengineering, 11(3), pp. 388.394. 18. Bindu, P., and Thomas, S., 2014. Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis. Journal of Theoretical and Applied Physics, 8(4), pp. 123.134. 19. Birol, H., Damjanovic, D., and Setter, N., 2006. Preparation and Characterization of (K0.5Na0.5)NbO3 Ceramics. Journal of European Ceramics Society, 26, pp. 861.866. 20. Bottner, H., Nurnus, J., Gavrikov, A., Kuhner, G., Jagle, M., Kunzel, C., Eberhard, D., Plescher, G., Schubert, A., and Schlereth, K.H., 2004. New Thermoelectric Components Using Microsystems Technologies. Journal of Microelectromechanical Systems, 13(3), pp. 414.420. 21. Brunckova, H., Medvecky, .., and .uri.in, J., 2013. Effect of Substrate on Microstructure and Mechanical Properties of Sol-Gel Prepared (K,Na)NbO3 Thin Films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 178(4), pp. 254.262. 22. Brunckova, H., Medvecky, .., Hvizdo., P., and .uri.in, J., 2015. Structural and Nanomechanical Properties of Sol-Gel Prepared (K,Na)NbO3 Thin Films. Surface and Interface Analysis, 47(11), pp. 1063.1071. 23. Buscaglia, M.T., Buscaglia, V., Viviani, M., Nanni, P., and Hanuskova, M., 2000. Influence of Foreign Ions on the Crystal Structure of BaTiO3. Journal of the European Ceramic Society, 20(12), pp. 1997.2007. 24. Cazorla, P.H., Fuchs, O., Cochet, M., Maubert, S., Le Rhun, G., Robert, P., Fouillet, Y., and Defay, E., 2014. Piezoelectric Micro-Pump with PZT Thin Film for Low Consumption Microfluidic Devices. Procedia Engineering, 87, pp. 488.491. 25. Chaipanich, A., 2007. Dielectric and Piezoelectric Properties of PZT.cement Composites. Current Applied Physics, 7(5), pp. 537.539. 26. Chalasani, S., and Conrad, J.M., 2008. A Survey of Energy Harvesting Sources for Embedded Systems. In: Proceedings of IEEE SOUTHEASTCON, Huntsville, USA, 3-6 April 2008. IEEE. 27. Chen, H., and Fan, C., 2010. Fabrication and Properties of PYN.PMN.PZT Quaternary Piezoelectric Ceramics for High-Power, High-Temperature Applications. Materials Letters, 64(6), pp. 654.656. 28. Chen, M., Lu, S.S., and Liao, B., 2005. On the Figure of Merit of Thermoelectric Generators. Journal of Energy Resources Technology, 127(1), pp. 37-40. 29. Chen, Y., Yang, S., Huybrechts, B., Ishizaki, K., Takata, M., Gijp, S. Van Der Islam, R., Choudhury, S., Rahman, S.N., Rahman, M.M.J., Akter, S., Rahman, M.M.J., Bhuiyan, A., Rahman, S.N., Khatun, N., Hossain, M., Im, I., Jo, H.S., Oh, S.H., So, B.M., and Kun, H., 2011. PTCR Effect in Donor Doped Barium Titanate: Review of Compositions, Microstructures, Processing and Properties. Advances in Applied Ceramics, 110(5), pp. 257.269. 30. Cheng, H.F., Chiou, G.S., Liu, K.S., and Lin, I.N., 1997. Ferroelectric Properties of (Sr0.5Ba0.5)Nb2O6 Thin Films Synthesized by Pulsed Laser Deposition. Applied Surface Science, 113-114, pp. 217.221. 31. Cheng, W.X., Ding, A. L., Qiu, P., He, X., and Zheng, X., 2005. Imprint Properties of Yttrium Doped PZT Thin Film. Integrated Ferroelectrics, 75(1), pp. 173.179. 32. Choi, W.J., Jeon, Y., Jeong, J.H., Sood, R., and Kim, S.G., 2006. Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers. Journal of Electroceramics, 17, pp. 543.548. 33. Christenson, H., and Kreiter, A., 1985. Theory of the Effects of Rapid Thermal Annealing on Thin-Film Crystallization. Physical Review Letters 8, 55(2), pp. 1.3. 34. Chu, T., He, C., Tailor, H., and Long, X., 2014. Preparation and Characterization of Lead-Free (K0.5Na0.5)NbO3-LiNbO3 and (K0.5Na0.5)NbO3-LiTaO3 Ferroelectric Single Crystals. Crystals, 4(3), pp. 296.305. 35. Chua, N.T., You, L., Ma, J., and Wang, J., 2010. Properties of (K,Na)NbO3-Based Lead-Free Piezoelectric Films Prepared by Pulsed Laser Deposition. Thin Solid Films, 518(23), pp. 6777.6780. 36. Colomer-Farrarons, J., and Pere Miribel, 2011. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices, 2nd ed., New York: Springer. 37. Cook-Chennault, K. A, Thambi, N., and Sastry, A M., 2008. Powering MEMS Portable Devices-A Review of Non-Regenerative and Regenerative Power Supply Systems with Special Emphasis on Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 17(4), pp. 1-3. 38. Dai, Y., Gao, Q., Dai, J., Tang, X., Yang, L., Cui, C., Li, X., Li, C., and Liu, Z., 2016. Influence of Magnetic Annealing on the Ferroelectric and Dielectric Properties of BaTiO3.CoFe2O4 Multilayer Films Prepared by Chemical Solution Deposition. Journal of Alloys and Compounds, 672, pp. 536.542. 39. Damjanovic, D., Klein, N., Li, J., and Porokhonskyy, V., 2010. What Can Be Expected From Lead-Free Piezoelectric Materials?. Functional Materials Letters, 3(1), pp. 5.13. 40. Danks, A.E., Hall, S.R., and Schnepp, Z., 2016. The Evolution of �esol.gel�f Chemistry as a Technique for Materials Synthesis. RSC Advances, 3, pp. 91.112. 41. Deng, L., Wen, Z., Zhao, X., Yuan, C., Luo, G., and Mo, J., 2014. High Voltage Output MEMS Vibration Energy Harvester in d31 Mode With PZT Thin Film. Journal of Microelectromechanical Systems, 23(4), pp. 855.861. 42. Deng, Q., Zhang, J., Huang, T., Xu, L., Jiang, K., Li, Y., Hu, Z., and Chu, J., 2015. Optoelectronic Properties and Polar Nano-Domain Behavior of Sol.gel Derived K0.5Na0.5 Nb1.xMnxO3.ƒÂ Nanocrystalline Films with Enhanced Ferroelectricity. Journal of Material Chemistry C, 3(31), pp. 8225.8234. 43. Dicken, J., Mitcheson, P.D., Stoianov, I., and Yeatman, E.M., 2012. Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications. IEEE Transactions on Power Electronics, 27(11), pp. 4514.4529. 44. Dikilitas, M., Karakas, S., and Ahmad, P., 2016. Plant Metal Interaction: Emerging Remediation Techniques, 2nd ed., Netherlands: Elsevier. 45. Ding, Y., Li, Y., Deng, W., Huang, W., and Wang, C., 2013. Variation of Optimum Yttrium Doping Concentrations of Perovskite Type Proton Conductors BaZr1.xYxO3.ƒ¿ (0.x.0.3) with Temperature. Journal of Rare Earths, 31(10), pp. 1017.1022. 46. Dolhen, M., Mahajan, A., Pinho, R., Costa, M.E., Trolliard, G., and Vilarinho, P.M., 2015. Sodium Potassium Niobate (K0.5Na0.5NbO3) Thick Films by Electrophoretic Deposition. RSC Advances, 5(6), pp. 4698.4706. 47. Dorey, R.A., and Whatmore, R.W., 2004. Electroceramic Thick Film Fabrication for MEMS. Journal of Electroceramics, 12(2), pp. 19.32. 48. Du, J., Wang, J., Zang, G., and Yi, X., 2011. Phase Transition Behavior and Piezoelectric Properties of Low-Li and High-Sb Modified KNN Based Piezoceramics. Physica B: Condensed Matter, 406(21), pp. 4077.4079. 49. Eichel, R. A., Erunal, E., Drahus, M.D., Smyth, D.M., Van Tol, J., Acker, J., Kungl, H., and Hoffmann, M.J., 2009. Local Variations in Defect Polarization and Covalent Bonding in Ferroelectric Cu(2+)-Doped PZT and KNN Functional Ceramics at the Morphotropic Phase Boundary. Physical Chemistry Chemical Physics, 11(39), pp. 698.705. 50. Es-Souni, M., Abed, M., Solterbeck, C.H., and Piorra, A., 2002. Crystallization Kinetics and Dielectric Properties of Solution Deposited, La Doped PZT Thin Films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 94(3), pp. 229.236. 51. Fasquelle, D., Mascot, M., and Carru, J.C., 2012. On the Research of Lead-Free Material Challengers for PZT Replacement. Solid-State Electronics, 75, pp. 6.12. 52. Fasquelle, D., Mascot, M., Sama, N., Remiens, D., and Carru, J.C., 2015. Lead-Free Piezoelectric Thin Films for RoHS Devices. Sensors and Actuators A: Physical, 229, pp. 30.35. 53. Feizpour, M., Ebadzadeh, T., and Jenko, D., 2016. Synthesis and Characterization of Lead-Free Piezoelectric (K0.50Na0.50)NbO3 Powder Produced at Lower Calcination Temperatures: A Comparative Study with a Calcination Temperature of 850 .C. Journal of the European Ceramic Society, 36(7), pp. 1.9. 54. Fish, G., Dempsey, M., and Roberts, N., 2012. Natural Frequency Analysis of Modelica Powertrain Models Modal Frequency Modelica Models. In: 9th International Modelica Conference, Munich, Germany, 3-5 September 2012. Springer. 55. Fu, F., Shen, B., Zhai, J., Xu, Z., and Yao, X., 2011. Electrical Properties of Li Doped Sodium Potassium Niobate Thick Films Prepared by a Tape Casting Process. Journal of Alloys and Compounds, 509(25), pp. 7130.7133. 56. Fu, P., Xu, Z., Chu, R., Li, W., Xie, Q., Zhang, Y., and Chen, Q., 2010. Effect of Dy2O3 on the Structure and Electrical Properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 Lead-Free Piezoelectric Ceramics. Journal of Alloys and Compounds, 508(2), pp. 546.553. 57. Gambier, P., Anton, S.R., Kong, N., Erturk, A, and Inman, D.J., 2011. Piezoelectric, Solar and Thermal Energy Harvesting for Hybrid Low-Power Generator Systems with Thin-Film Batteries. Measurement Science and Technology, 23(1), pp. 1-11. 58. Ganguly, P., 2015. Influence of Ionic Radius of Rare-Earths on the Structural and Electrical Properties of Ba5RTi3Nb7O30 (R=rare-earth) Ferroelectric Ceramics. Journal of Rare Earths, 33(12), pp. 1310.1315. 59. Gao, D., Kwok, K.W., Lin, D., and Chan, H.L.W., 2009. Microstructure and Electrical Properties of La-Modified K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics. Journal of Physics D: Applied Physics, 42(3), pp.1-6. 60. Gonnard, P., and Troccaz, M., 1978. Dopant Distribution Type ABO , between A and B Sites in the PZT Ceramics of. Journal of Solid State Chemistry, 326, pp. 321.326. 61. Guo, X., Chen, Y., Wang, G., Zhang, Y., Ge, J., Tang, X., Ponchel, F., Remiens, D., and Dong, X., 2016. Growth and Characterization of Yttrium Iron Garnet Films on Si Substrates by Chemical Solution Deposition (CSD) Technique. Journal of Alloys and Compounds, 671, pp. 234.237. 62. Haertling, G., 1999. Ferroelectric Ceramics: History and Technology. Journal of American Ceramics Society, 82(4), pp.797-818. 63. Halim, M.A., Cho, H., and Park, J.Y., 2015. Design and Experiment of a Human-Limb Driven, Frequency up-Converted Electromagnetic Energy Harvester. Energy Conversion and Management, 106, pp. 393.404. 64. Han, G., Ahn, C.W., Ryu, J., Yoon, W.H., Choi, J.J., Hahn, B.D., Kim, J.W., Choi, J.H., and Park, D.S., 2011. Effect of Tetragonal Perovskite Phase Addition on the Electrical Properties of KNN Thick Films Fabricated by Aerosol Deposition. Materials Letters, 65, pp. 62.64. 65. Harris, N.R., Hill, M., Torah, R., Townsend, R., Beeby, S., White, N.M., and Ding, J., 2006. A Multilayer Thick-Film PZT Actuator for MEMS Applications. Sensors and Actuators, A: Physical, 132, pp. 311.316. 66. Hirschauer, B., Chiaia, G., Gothelid, M., and Karlsson, U.O., 2009. Studies of Highly Oriented CeO2 Films Grown on Si (111) by Pulsed Laser Deposition. Thin Solid Films, 348(1), pp. 3.7. 67. Hong, C.H., Kim, H.P., Choi, B.Y., Han, H.S., Son, J.S., Ahn, C.W., and Jo, W., 2016. Lead-Free Piezoceramics . Where to Move On. Journal of Materiomics, 2(1), pp. 1.24. 68. Hudak, N.S., and Amatucci, G.G., 2008. Small-Scale Energy Harvesting through Thermoelectric, Vibration, and Radiofrequency Power Conversion. Journal of Applied Physics, 103(10), pp. 1-24. 69. Hwan, J., Hyun, K., Heon, D., and Park, J., 2003. Effect of PMN Addition on Dielectric Properties of PZT Thin Films Synthesized by Modified Chemical Solution Process. Materials Chenistry and Physics, 79, pp. 151.153. 70. Islam, M.N., Seethaler, R., and Alam, M.S., 2015. Characterization of Piezoelectric Materials for Simultaneous Strain and Temperature Sensing for Ultra-Low Frequency Applications. Smart Materials and Structures, 24(8), pp. 1-8. 71. Jae-Shin, L., Do, N.B., Ali, H., Hee, D.L., Ill, W.K., and Weon, P.T., 2010. Enhanced Electric-Field-Induced Strain at the Ferroelectric-Electrostrcitive Phase Boundary of Yttrium-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Piezoelectric Ceramics. Journal of the Korean Physical Society, 57(41), pp. 892-896. 72. Jeon, Y.B., Sood, R., Jeong, J.H., and Kim, S.G., 2005. MEMS Power Generator with Transverse Mode Thin Film PZT. Sensors and Actuators A: Physical, 122(1), pp. 16.22. 73. Jeong, S.J., Kim, M.S., Song, J.S., and Lee, H.K., 2008. Two-Layered Piezoelectric Bender Device for Micro-Power Generator. Sensors and Actuators, A: Physical, 148(1), pp. 158.167. 74. Jha, P.A., and Jha, A.K., 2013. Effects of Yttrium Substitution on Structural and Electrical Properties of Barium Zirconate Titanate Ferroelectric Ceramics. Current Applied Physics, 13(7), pp. 1413.1419. 75. Jia, Y., and Seshia, A.A., 2016. Five Topologies of Cantilever . Based MEMS Piezoelectric Vibration Energy Harvesters : A Numerical and Experimental Comparison. Microsystem Technologies, 22(12), pp. 2841.2852. 76. Jiang, X., Polastre, J., and Culler, D., 2005. Perpetual Environmentally Powered Sensor Networks. In: 4th International Symposium on Information Processing in Sensor Networks, Boise, USA, 15 April 2005. IEEE. 77. Johnson, R.L., 2005. Characterization of Piezoelectric ZnO Thin Lms and the Fabrication of Piezoelectric Micro-Cantilevers. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, 21(3), pp. 15.18. 78. Johnsson, M., and Lemmens, P., 2007. Crystallography and Chemistry of Perovskites. Magnetism and Advanced Magnetic Materials, 4, pp. 1.11. 79. Julien, C., Haro-Poniatowski, E., Camacho-Lpez, M.A., Escobar-Alarcn, L., and Jmenez-Jarquenn, J., 1999. Growth of V2O5 Thin Films by Pulsed Laser Deposition and Their Applications in Lithium Microbatteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 65(3), pp. 170.176. 80. Kalanur, S.S., Yoo, I.H., Lee, Y.A., and Seo, H., 2015. Green Deposition of Pd Nanoparticles on WO3 for Optical, Electronic and Gasochromic Hydrogen Sensing Applications. Sensors and Actuators B: Chemical, 221, pp. 411.417. 81. Kang, D.H., Lee, B.S., An, H.K., Kim, Y.H., Paik, D.S., Hwang, H.I., and Cho, N.K., 2010. Characteristics of Yttrium Doped Sodium Bismuth Titanate Thin Films. Materials Letters, 64(21), pp. 2331.2333. 82. Kang, S.H., Lee, D.S., Lee, S.Y., Kim, I.W., Kim, J.S., Park, E.C., and Lee, J.S., 2004. Pyroelectric and Piezoelectric Properties of Yttrium-Doped 0.15[Pb(Ni1/3Nb2/3)O3].0.85[Pb(Zr1/2Ti1/2)O3] Ceramics. Ceramics International, 30(7), pp. 1453.1457. 83. Kanno, I., Ichida, T., Adachi, K., Kotera, H., Shibata, K., and Mishima, T., 2012. Power-Generation Performance of Lead-Free (K,Na)NbO3 Piezoelectric Thin-Film Energy Harvesters. Sensors and Actuators, A: Physical, 179, pp. 132.136. 84. Kholkin, A.L., Pertsev, N.A., and Goltsev, A.V., 2008. Piezoelectric and Acoustic Materials for Transducer Applications, 2nd ed., New York: Springer-Verlag. 85. Khorrami, G.H., Khorsand Zak, A., Kompany, A., and Yousefi, R., 2012. Optical and Structural Properties of X-Doped (X=Mn, Mg, and Zn) PZT Nanoparticles by Kramers.Kronig and Size Strain Plot Methods. Ceramics International, 38(7), pp. 5683.5690. 86. Khorrami, G.H., Kompany, A., and Khorsand Zak, A., 2015. Structural and Optical Properties of (K,Na)NbO3 Nanoparticles Synthesized by a Modified Sol-Gel Method Using Starch Media. Advanced Powder Technology, 26(1), pp. 113.118. 87. Khushalani, D.G., Pande, R.S., and Patrikar, R.M., 2016. Fabrication and Characterization of MEMS Cantilever Array for Switching Applications. Microelectronic Engineering, 157, pp. 78.82. 88. Kim, D.H., Cho, N.G., Park, H., and Kim, H.G., 2007. Structural and Electrical Properties of High Temperature Deposited Epitaxial Zno Thin Film Fabricated By Rf Magnetron Sputtering. Integrated Ferroelectrics, 95(1), pp. 35.43. 89. Kim, J.S., Lee, H.J., Lee, S.Y., Kim, I.W., and Lee, S.D., 2010. Frequency and Temperature Dependence of Dielectric and Electrical Properties of Radio-Frequency Sputtered Lead-Free K0.48Na0.52NbO3 Thin Films. Thin Solid Films, 518(22), pp. 6390.6393. 90. Kim, S., Kim, C., Lee, K., and Lee, S., 2002. Piezoelectric and Electrical Properties of PZT-PSN Thin Film Ceramics for MEMS Applications. Materials Science in Semiconductor, 5, pp. 115.121. 91. Kim, S.G., Priya, S., and Kanno, I., 2012. Piezoelectric MEMS for Energy Harvesting. Materials Research Bulletin, 37(11), pp. 1039.1050. 92. Kishi, H., Kohzu, N., Sugino, J., and Ohsato, H., 1999. The Effect of Rare-Earth (La, Sm, Dy, Ho and Er) and Mg on the Microstructure in BaTiO3. Journal of European Ceramic Society, 19, pp. 3.6. 93. Kok, S.L., White, N.M., and Harris, N.R., 2008. A Free-Standing, Thick-Film Piezoelectric Energy Harvester. IEEE Sensors, pp. 589.592. 94. Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T., and Li, S., 2014. Waste Energy Harvesting, 2nd ed., Berlin: Springer Berlin Hiedelberg. 95. Kozuka, H., and Takenaka, S., 2002. Single-Step Deposition of Gel-Derived Lead Zirconate Titanate Films: Critical Thickness and Gel Film to Ceramic Film Conversion. Journal of the American Ceramic Society, 85(11), pp. 2696.2702. 96. Krebs, H., Weisheit, M., Erik, S., Scharf, T., Fuhse, C., St, M., Sturm, K., Seibt, M., Kijewski, H., Nelke, D., Panchenko, E., and Buback, M., 2003. Pulsed Laser Deposition (PLD)-A Versatile Thin Film Technique UHV-Chamber. Advances in Solid State Physics SE, 36, pp. 505.518. 97. Kumar Patel, P., and Yadav, K.L., 2014. Effect of Yttrium on Microstructure, Dielectric, Ferroelectric and Optical Properties of BaZr0.10Ti0.90O3 Nanoceramics. Physica B: Condensed Matter, 442, pp. 39.43. 98. Kumari, P., Rai, R., Sharma, S., Shandilya, M., and Tiwari, A., 2015. State-of-the-Art of Lead Free Ferroelectrics : A Critical Review. Advanced Material Letters, 6(6), pp. 453.484. 99. Kupec, A., and Mali., B., 2014. Structural and Dielectric Properties of the Lead-Free (1.x)K0.5Na0.5NbO3.xSrTiO3 Thin Films from Solutions. Journal of Alloys and Compounds, 596, pp. 32.38. 100. Ku..er, D., Skalar, M., Holc, J., and Kosec, M., 2009. Processing and Properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Thick Films. Journal of the European Ceramic Society, 29(1), pp. 105.113. 101. Lacy, F., 2011. Developing a Theoretical Relationship between Electrical Resistivity, Temperature, and Film Thickness for Conductors. Nanoscale Research Letters, 6(1), pp. 1-14. 102. Lau, C.M., Xu, X.W., and Kwok, K.W., 2015. Photoluminescence, Ferroelectric, Dielectric and Piezoelectric Properties of Er-Doped BNT.BT Multifunctional Ceramics. Applied Surface Science, 336, pp. 314.320. 103. Lam, K.H., Lin, D.M., and Chan, H.L.W., 2007. Lead-Free Acoustic Emission Sensors. The Review of Scientific Instruments, 78(11), pp.1-4. 104. Lee, S.Y., Kim, J.S., Ahn, C.W., In Hwang, H., and Kim, I.W., 2010. Impedance Spectroscopy and Relaxation Phenomena of (Na,K) Excess Na0.5K0.5NbO3 Thin Films Grown by Chemical Solution Deposition. Thin Solid Films, 519(2), pp. 947.951. 105. Lerch, R., 1990. Simulation of Piezoelectric Devices by Two-and-Three-Dimensional Finite Elements. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(2), pp. 233-247. 106. Letailleur, A.A., Ribot, F., Boissiere, C., Teisseire, J., Barthel, E., Desmazieres, B., Chemin, N., and Sanchez, C., 2011. Sol-Gel Derived Hybrid Thin Films: The Chemistry behind Processing. Chemistry of Materials, 23(22), pp. 5082.5089. 107. Li, C., Liu, M., Zeng, Y., and Yu, D., 1997. Preparation and Properties of Yttrium-Modified Lead Zirconate Titanate Ferroelectric Thin Films. Sensors and Actuators A: Physical, 58, pp. 245.247. 108. Li, G., Wu, X., Ren, W., and Shi, P., 2013a. Effect of Excessive K and Na on the Dielectric Properties of (K,Na)NbO3 Thin Films. Thin Solid Films, 548, pp. 556.559. 109. Li, J.F., Wang, K., Zhu, F.Y., Cheng, L.Q., and Yao, F.Z., 2013b. (K,Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges. Journal of the American Ceramic Society, 96(12), pp. 3677.3696. 110. Li, J.F., Zhen, Y., Zhang, B.P., Zhang, L.M., and Wang, K., 2008. Normal Sintering of (K, Na)NbO3-Based Lead-Free Piezoelectric Ceramics. Ceramics International, 34(4), pp. 783.786. 111. Li, Q., Chou, S.L., Wang, J.Z., Shi, D., and Liu, H.K., 2014a. Highly Oriented LiFePO4 Thin Film Electrodes via Chemical Solution Deposition. Solid State Ionics, 268(3), pp. 117.124. 112. Li, T., Scotch, A.M., Chan, H.M., Harmer, M.P., Park, S., Shrout, T.R., and Michael, J.R., 2001. Single Crystals of Pb(Mg1/3Nb2/3)O3.35 mol% PbTiO3 from Polycrystalline Precursors. Journal of American Ceramic Society, 48, pp. 244.248. 113. Li, T., Wang, G., Li, K., Du, G., Chen, Y., Zhou, Z., and Remiens, D., 2014. Electrical Properties of Lead-Free KNN Fi Lms on SRO / STO by RF Magnetron Sputtering. Ceramics International, 40(1), pp. 1195.1198. 114. Li, T., Wang, G., Remiens, D., and Dong, X., 2013c. Characteristics of Highly (001) Oriented (K,Na)NbO3 Films Grown on LaNiO3 Bottom Electrodes by RF Magnetron Sputtering. Ceramics International, 39(2), pp. 1359.1363. 115. Li, W., Hao, J., Bai, W., Xu, Z., Chu, R., and Zhai, J., 2012a. Enhancement of the Temperature Stabilities in Yttrium Doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 Ceramics. Journal of Alloys and Compounds, 531, pp. 46.49. 116. Li, Y., Dai, Y.J., Wang, H.Q., Sun, T., Xu, W., and Zhang, X.W., 2012b. Microstructures and Electrical Properties of KNbO3 Doped (Li,Ta,Sb) Modified (K,Na)NbO3 Lead-Free Ceramics by Two-Step Sintering. Materials Letters, 89, pp. 70.73. 117. Li, Y., and Shi, R., 2015. An Intelligent Solar Energy-Harvesting System for Wireless Sensor Networks. Journal on Wireless Communications and Networking, 15(1), pp. 1-12. 118. Li, Y.M., Shen, Z.Y., Wu, F., Pan, T.Z., Wang, Z.M., and Xiao, Z.G., 2013d. Enhancement of Piezoelectric Properties and Temperature Stability by Forming an MPB in KNN-Based Lead-Free Ceramics. Journal of Materials Science: Materials in Electronics, 25(2), pp. 1028.1032. 119. Liao, Y., Xu, Y., and Chan, Y., 2013. Semiconductor Nanocrystals in Sol-Gel Derived Matrices. Physical Chemistry Chemical Physics, 15(33), pp. 694.704. 120. Lin, D., Kwok, K.W., and Chan, H.L.W., 2007. Structure, Dielectric, and Piezoelectric Properties of CuO-Doped KNaNbO3.BaTiO3 Lead-Free Ceramics. Journal of Applied Physics, 102(7), pp. 1-6. 121. Lin, M.C., Wang, C., Chang, L.H., Luo, G.H., and Yeh, M.K., 2003. Effects of Material Properties on Resonance Frequency of a CESR-III Type 500 MHz SRF Cavity. In: Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting, Portland, USA, 12-15 May 2003. IEEE. 122. Liu, H., Qian, Y., and Lee, C., 2013. A Multi-Frequency Vibration-Based MEMS Electromagnetic Energy Harvesting Device. Sensors and Actuators A: Physical, 204, pp. 37.43. 123. Liu, J.Q., Fang, H.B., Xu, Z.Y., Mao, X.H., Shen, X.C., Chen, D., Liao, H., and Cai, B.C., 2008a. A MEMS-Based Piezoelectric Power Generator Array for Vibration Energy Harvesting. Microelectronics Journal, 39(5), pp. 802.806. 124. Liu, W., and Ren, X., 2009. Large Piezoelectric Effect in Pb-Free Ceramics. Physical Review Letters, 103(25), pp. 1.4. 125. Liu, X., Hong, R., and Tian, C., 2008b. Tolerance Factor and the Stability Discussion of ABO3-Type Ilmenite. Journal of Materials Science: Materials in Electronics, 20(4), pp. 323.327. 126. Lopez-Juarez, R., Gonzalez-Garcia, F., Zarate-Medina, J., Escalona-Gonzalez, R., De La Torre, S.D., and Villafuerte-Castrejon, M.E., 2011. Piezoelectric Properties of Li.Ta Co-Doped Potassium.sodium Niobate Ceramics Prepared by Spark Plasma and Conventional Sintering. Journal of Alloys and Compounds, 509(9), pp. 3837.3842. 127. Luo, C., Cao, G.Z., and Shen, I.Y., 2013a. Development of a Lead-Zirconate-Titanate (PZT) Thin-Film Microactuator Probe for Intracochlear Applications. Sensors and Actuators A: Physical, 201, pp. 1.9. 128. Luo, Y., Li, X., Chang, L., Gao, W., Yuan, G., Yin, J., and Liu, Z., 2013b. Upward Ferroelectric Self-Poling in (001) Oriented PbZr0.2Ti0.8O3 Epitaxial Films with Compressive Strain. AIP Advances, 3(12), pp. 1.8. 129. Mahesh, P., and Pamu, D., 2014. Effect of Deposition Temperature on Structural, Mechanical, Optical and Dielectric Properties of Radio Frequency Sputtered Nanocrystalline (KxNa1.x)NbO3 Thin Films. Thin Solid Films, 562, pp. 471.477. 130. Marandian Hagh, N., Kerman, K., Jadidian, B., and Safari, A., 2009. Dielectric and Piezoelectric Properties of Cu2+-Doped Alkali Niobates. Journal of the European Ceramic Society, 29(11), pp. 2325.2332. 131. Matsubara, M., Yamaguchi, T., Kikuta, K., and Hirano, S., 2005. Effect of Li Substitution on the Piezoelectric Properties of Potassium Sodium Niobate Ceramics. Japanese Journal of Applied Physics, 44(8), pp. 6136.6142. 132. Mccusker, L.B., Dreele, R.B. Von, Cox, D.E., Louer, D., and Scardi, P., 1999. Rietveld Refinement Guidelines. Journal of Applied Crystallography, 32, pp. 36.50. 133. Mensur Alkoy, E., and Berksoy, A., 2010. Effect of Cu and Li Addition on the Electrical Properties of KNN Ceramics. In: Proceedings of the 2010 IEEE International Symposium on the Applications of Ferroelectrics, Edinburgh, UK, 9-12 August. IEEE. 134. Mgbemere, H.E., Herber, R.P., and Schneider, G.A., 2009. Investigation of the Dielectric and Piezoelectric Properties of Potassium Sodium Niobate Ceramics close to the Phase Boundary at (K0.35Na0.65)NbO3 and Partial Substitutions with Lithium and Antimony. Journal of the European Ceramic Society, 29(15), pp. 3273.3278. 135. Mgbemere, H.E., Akano, T.T., and Schneider, G.A., 2017. Effect of Bismuth Titanate on the Properties of Potassium Sodium Niobate-Based Ceramics. Journal of Asian Ceramic Societies, 5(1), pp. 49.55. 136. Min, Y.S., An, C.J., Kim, S.K., Song, J., and Hwang, C.S., 2010. Growth and Characterization of Conducting ZnO Thin Films by Atomic Layer Deposition. Bulletin of the Korean Chemical Society, 31(9), pp. 2503.2508. 137. Munaz, A., Lee, B.-C., and Chung, G.-S., 2013. A Study of an Electromagnetic Energy Harvester Using Multi-Pole Magnet. Sensors and Actuators A: Physical, 201, pp. 134.140. 138. Musil, J., Baroch, P., Vl.ek, J., Nam, K.H., and Han, J.G., 2005. Reactive Magnetron Sputtering of Thin Films: Present Status and Trends. Thin Solid Films, 475(2), pp. 208.218. 139. Nakashima, Y., Sakamoto, W., and Yogo, T., 2011. Processing of Highly Oriented (K,Na)NbO3 Thin Films Using a Tailored Metal-Alkoxide Precursor Solution. Journal of the European Ceramic Society, 31(14), pp. 2497.2503. 140. Nguyen, M.D., Dekkers, M., Houwman, E.P., Vu, H.T., Vu, H.N., and Rijnders, G., 2016. Lead-Free (K0.5Na0.5)NbO3 Thin Films by Pulsed Laser Deposition Driving MEMS-Based Piezoelectric Cantilevers. Materials Letters, 164, pp. 413.416. 141. Niederberger, M., 2009. Metal Oxide Nanoparticles in Organic Solvents. Accounts of Chemical Research, 40, pp. 793.800. 142. Nili, H., Kandjani, A.E., Plessis, J. Du, Bansal, V., Kalantar-zadeh, K., Sriram, S., and Bhaskaran, M., 2013. Alkali Ratio Control for Lead-Free Piezoelectric Thin Films Utilizing Elemental Diffusivities in RF Plasma. RSC Advances, 15(36), pp. 7222-7229. 143. Ooi, B.L., Gilbert, J.M., and Aziz, A.R.A., 2015. Switching Damping for a Frequency-Tunable Electromagnetic Energy Harvester. Sensors and Actuators A: Physical, 234, pp. 311.320. 144. Ou-Yang, J., Zhu, B., Yan, X., Zhao, J., Ren, W., and Yang, X., 2015. Electrical Properties of PMN.PZT Film on Silicon Lens. Ceramics International, 41, pp. 4243.4247. 145. Panda, P.K., 2009. Review: Environmental Friendly Lead-Free Piezoelectric Materials. Journal of Materials Science, 44(19), pp. 5049.5062. 146. Pang, X., Qiu, J., Zhu, K., and Zheng, H., 2012. Synthesis and Characterization of (K0.5Na 0.5)NbO3 Piezoelectric Ceramics Prepared Using K5.70Li4.07 Nb10.23O30 as a New Sintering Aid. Ferroelectrics, 432(1), pp. 73.80. 147. Park, J.C., Park, J.Y., and Lee, Y.P., 2010. Modeling and Characterization of Piezoelectric d33-Mode MEMS Energy Harvester. Journal of Microelectromechanical Systems, 19(5), pp. 1215.1222. 148. Park, J.S., and Kim, Y.B., 2016. Synthesis and Characterization of Nanoporous Strontium-Doped Lanthanum Cobaltite Thin Film Using Metal Organic Chemical Solution Deposition. Thin Solid Films, 599, pp. 174.178. 149. Park, K.J., Kim, C.H., Yoon, Y.J., Song, S.M., Kim, Y.T., and Hur, K.H., 2009. Doping Behaviors of Dysprosium, Yttrium and Holmium in BaTiO3 Ceramics. Journal of the European Ceramic Society, 29(9), pp. 1735.1741. 150. Park, S.E, and Shrout, T., 1997a. Characteristics of Relaxor-Based Piezoelectric Single Crystals for Ultrasonic Transducers. Ultrasonics, Ferroelectrics, and Frequency Control, 44(5), pp. 1140.1147. 151. Park, S.E., and Shrout, T.R., 1997b. Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals. Journal of Applied Physics, 82(4), pp. 1804-1811. 152. Patel, I., Siores, E., and Shah, T., 2010. Utilisation of Smart Polymers and Ceramic Based Piezoelectric Materials for Scavenging Wasted Energy. Sensors and Actuators A: Physical, 159(2), pp. 213.218. 153. Ponnamma, D., Chamakh, M. M., Deshmukh, K., Ahamed, M. B., Erturk, A., Sharma, P., and Al-Maadeed, M. A. A., 2017. Smart Polymer Nanocomposites, 10th ed., New York: Springer International Publishing. 154. Pramanik, S., 2013. Developments of Immobilized Surface Modified Piezoelectric Crystal Biosensors for Advanced Applications. International Journal of Electrochemical Science, 8, pp. 8863.8892. 155. Priya, S., 2007. Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers. Journal of Electroceramics, 19(1), pp. 165.182. 156. Prosser, J.H., Brugarolas, T., Lee, S., Nolte, A.J., and Lee, D., 2012. Avoiding Cracks in Nanoparticle Films. Nano Letters, 12(10), pp. 5287.5291. 157. Qian, S., Zhu, K., Pang, X., Liu, J., Qiu, J., and Du, J., 2014. Phase Transition, Microstructure, and Dielectric Properties of Li / Ta / Sb Co-Doped (K,Na) NbO3 Lead-Free Ceramics. Ceramics International, 40(3), pp. 4389.4394. 158. Qiu, W., and Hng, H.H., 2004. Effects of Addition of Pb(Y1/2Nb1/2)O3 (PYN) on Microstructure and Piezoelectric Properties of Pb(Zr0.53Ti0.47)O3. Ceramics International, 30(8), pp. 2171.2176. 159. Raghavan, C.M., Kim, J.W., Song, T.K., and Kim, S.S., 2015. Microstructural and Ferroelectric Properties of Rare Earth (Ce, Pr, and Tb)-Doped Na0.5Bi4.5Ti3O15 Thin Films. Applied Surface Science, 355, pp. 1007.1012. 160. Raghavender, M., Kumar, G.S., and Prasad, G., 2006. Modification of Dielectric Relaxations in Sodium Bismuth Titanate with Samarium Doping. Journal of Physics and Chemistry of Solids, 67(8), pp. 1803.1808 161. Ramanathan, S., 2010. Thin Film Metal-Oxides, 2nd ed., Harvard University: Springer New York Dordrecht. 162. Rani, R., 2011. Influence of Sintering Temperature on Densification, Structure and Microstructure of Li and Sb Co-Modified (K,Na)NbO3-Based Ceramics. Materials Sciences and Applications, 2(10), pp. 1416.1420. 163. Rao, M., and Mitra, S.P., 2015. Static and Vibration Analysis of Composite Beams Using Finite Element Methods. International Journal of Research, 2(11), pp. 75.80. 164. Raymond, O., Ochoa, D. A., Garcia, J.E., and Mestres, L., 2015. Growth and Physical Properties of Highly Oriented La-Doped (K,Na)NbO3 Ferroelectric Thin Films. Thin Solid Films, 577, pp. 35.41. 165. Ringgaard, E., and Wurlitzer, T., 2005. Lead-Free Piezoceramics Based on Alkali Niobates. Journal of the European Ceramic Society, 25, pp. 2701.2706. 166. Roundy, S., Wright, P., and Rabaey, J., 2003. A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes. Computer Communications, 26, pp. 1131.1144. 167. Rubio-Marcos, F., Romero, J.J., Martin-Gonzalez, M.S., and Fernandez, J.F., 2010. Effect of Stoichiometry and Milling Processes in the Synthesis and the Piezoelectric Properties of Modified KNN Nanoparticles by Solid State Reaction. Journal of the European Ceramic Society, 30(13), pp. 2763.2771. 168. Ruiz-Morales, J.C., Taranco, A., Canales-Vasques, J., Mendez-Ramoz, J., Hernandez-Alfonso, L., Acosta-Mora, P., Marin Rueda, J.R., and Fernandez-Gonzalez, R., 2017. Three Dimensional Printing of Components and Functional Devices for Energy and Environmental Applications. Energy & Environmental Science, (4), pp. 846.859. 169. Ruggero, B., Beucken, J. Van Den, Sander, L., and John, J., 2012. Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces. Coatings, 2(3), pp. 95.119. 170. Saeri, M.R., Barzegar, A., and Moghadam, H.A., 2011. Investigation of Nano Particle Additives on Lithium Doped KNN Lead Free Piezoelectric Ceramics. Ceramics International, 37, pp. 3083.3087. 171. Safari, A., and Abazari, M., 2010. Lead-Free Piezoelectric Ceramics and Thin Films. Ultrasonics, Ferroelectrics, and Frequency, 57(10), pp. 2165-2175. 172. Saiful Islam, M., 2000. Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour. Journal of Materials Chemistry, 10(4), pp. 1027.1038. 173. Saito, Y., Takao, H., Tani, T., and Nonoyama, T., 2004. Lead-Free Piezoceramics. Nature, 432, pp. 2.5. 174. Schmitz-Kempen, T., 2013. Comparable Measurements and Modeling of Piezoelectric Thin Films for MEMS Application. Ferroelectrics, 798(1), pp. 211.213. 175. Schoenung, J.M., 2008. Lead Compounds. Glass, 8(4), pp. 151.167. 176. Schwartz, R.W., 1997. Chemical Solution Deposition of Perovskite Thin Films. Chemistry of Materials, 9(11), pp. 2325.2340. 177. Shan, D., Qu, Y.F., and Song, J.J., 2007. Dielectric Properties and Substitution Preference of Yttrium Doped Barium Zirconium Titanate Ceramics. Solid State Communications, 141(2), pp. 65.68. 178. Shannon, R.D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Crystallographica, 32, pp. 14.16. 179. Sharma, A., Olszewski, O.Z., Torres, J., Mathewson, A., and Houlihan, R., 2015. Fabrication, Simulation and Characterisation of MEMS Piezoelectric Vibration Energy Harvester for Low Frequency. Procedia Engineering, 120, pp. 645.650. 180. Sharma, S., Tomar, M., Kumar, A., Puri, N.K., and Gupta, V., 2016. Photovoltaic Effect in BiFeO3/BaTiO3 Multilayer Structure Fabricated by Chemical Solution Deposition Technique. Journal of Physics and Chemistry of Solids, 93, pp. 63.67. 181. Sharma, S., Sinha, S., and Nasreen, E., 2017. Dielectric Relaxation and Modulus Spectroscopy Analysis of (Na0.47K0.47Li0.06)NbO3 Ceramics. Journal of Advanced Dielectrics, 7(3), pp. 1.11. 182. Shenck, N.S., and Paradiso, J.A., 2001. Energy Scavenging With Shoe-Mounted Piezoelectrics Electricity From the Forces Exerted on a Shoe During Walking. IEEE Micro, 272(1), pp. 30.42. 183. Shin, D.J., Jeong, S.J., Seo, C.E., Cho, K.H., and Koh, J.H., 2015. Multi-Layered Piezoelectric Energy Harvesters Based on PZT Ceramic Actuators. Ceramics International, 41, pp. 686.690. 184. Shirane, G., Newnham, R., and Pepinsky, R., 1954. Dielectric Properties and Phase Transitions of NaNbO3 and (Na, K)NbO3. Physical Review, 96(8), pp. 581-586. 185. Shrout, T., and Zhang, S., 2007. Lead-Free Piezoelectric Ceramics: Alternatives for PZT? Journal of Electroceramics, 40, pp. 111.124. 186. Shur, V.Y., Esin, A.A., Alikin, D.O., Turygin, A.P., Abramov, A.S., Hre, J., Bencan, A., Malic, B., and Kholkin, A.L., 2016. Ceramics Dielectric Relaxation and Charged Domain Walls in ( K, Na) NbO3-Based Ferroelectric Ceramics. Journal of Applied Physics, 101, pp. 1.7. 187. Singh, K.C., Jiten, C., Laishram, R., Thakur, O.P., and Bhattacharya, D.K., 2010. Structure and Electrical Properties of Li- and Ta-Substituted K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared from Nanopowders. Journal of Alloys and Compounds, 496(2), pp. 717.722. 188. Solarte, A.F., Pellegri, N., Sanctis, O. De, and Stachiotti, M.G., 2013. Simple and Rapid Fabrication of Na0.5K0.5NbO3 Thin Films by a Chelate Route. 2013. Journal of Ceramic, 496(2), pp.1-7. 189. Su, L., Zou, L., Fong, C.-C., Wong, W.L., Wei, F., Wong, K.Y., Wu, R.S.S., and Yang, M., 2013. Detection of Cancer Biomarkers by Piezoelectric Biosensor Using PZT Ceramic Resonator as the Transducer. Biosensors & Bioelectronics, 46, pp. 155.161. 190. Sun, L., Chen, Q., Wu, J., Peng, Z., Tan, Z., Xiao, D., and Zhu, J., 2014. Dielectric and Piezoelectric Properties of Cerium-Doped (NaBi)0.49-0.02Bi2Nb1.98Ta0.02O9-Based Piezoceramics. Ceramics International, 40(9), pp. 14159.14163. 191. Sun, Q., Gu, Q., Zhu, K., Wang, J., and Qiu, J., 2016. Stabilized Temperature-Dependent Dielectric Properties of Dy-Doped BaTiO3 Ceramics Derived from Sol-Hydrothermally Synthesized Nanopowders. Ceramics International, 42(2), pp. 3170.3176. 192. Tanaka, K., Kakimoto, K.I, and Ohsato, H., 2006. Fabrication of Highly Oriented Lead-Free (Na,K)NbO3 Thin Films at Low Temperature by Sol-Gel Process. Journal of Crystal Growth, 294(2), pp. 209.213. 193. Taub, J., Ramajo, L., and Castro, M.S., 2013. Phase Structure and Piezoelectric Properties of Ca- and Ba-Doped K1/2Na1/2NbO3 Lead-Free Ceramics. Ceramics International, 39(4), pp. 3555.3561. 194. Tealdi, C., Heath, J., and Islam, M.S., 2016. Feeling the Strain: Enhancing Ionic Transport in Olivine Phosphate Cathodes for Li- and Na-Ion Batteries through Strain Effects. Journal of Materials Chemistry A, 4(18), pp. 6998.7004. 195. Thompson, C. V., and Carel, R., 1996. Stress and Grain Growth in Thin Films. Journal of the Mechanics and Physics of Solids, 44(5), pp. 657.673. 196. Thoulsses, M.., 1995. Modeling the Development and Relaxation of Stresses in Thin Films. Annual Review of Materials Science, 25, pp. 69.96. 197. Ti, B., Hushur, A., Ko, J., and Kojima, S., 2002. Raman Scattering Study of A- and B-Site Substitutions. Journal of the Korean Physical Society, 41(5), pp. 763.768. 198. Tian, A., Ren, W., Wang, L., Du, H., and Yao, X., 2013. Enhanced Ferroelectric Properties in Bi-Doped K0.5Na0.5NbO3 Thin Films Prepared by Pulsed Laser Deposition. Materials Science and Engineering: B, 178(18), pp. 1240.1243. 199. Toby, B.H., 2006. R Factors in Rietveld Analysis: How Good Is Good Enough. Powder Diffraction, 21(1), pp. 67.70. 200. Tsur, Y., Dunbar, T.D., and Randall, C.A., 2001. Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3. Journal of Electroceramics, 7(1), pp. 25.34. 201. Vendrell, X., Garcia, J.E., Bril, X., Ochoa, D.A., Mestres, L., and Dezanneau, G., 2015. Improving the Functional Properties of (K0.5Na0.5)NbO3 Piezoceramics by Acceptor Doping. Journal of the European Ceramic Society, 35(1), pp. 125.130. 202. Vijatovic, M.M., Bobic, J.D., and Stojanovic, B.D., 2008. History and Challenges of Barium Titanate: Part II. Science of Sintering, 40(3), pp. 235.244. 203. Waggoner, P.S., and Craighead, H.G., 2009. The Relationship between Material Properties, Device Design, and the Sensitivity of Resonant Mechanical Sensors. Journal of Applied Physics, 105(5), pp. 1-14. 204. Wang, J.T.W., Wang, Z., Pathak, S.K., Zhang, W., De Quilettes, D., Wisnivesky, F., Huang, J., Nayak, P., Patel, J., Vaynzof, Y., Zhu, R., Ramirez, I., Zhang, J., Ducati, C., Grovenor, C., Johnston, M., 2016. Efficient Perovskite Solar Cells by Metal Ion Doping. Energy & Environmental Science, 9, pp. 2892.2901. 205. Wang, K., and Li, J.F., 2012. (K,Na)NbO3-Based Lead-Free Piezoceramics: Phase Transition, Sintering and Property Enhancement. Journal of Advanced Ceramics, 1(1), pp. 24.37. 206. Wang, L., Ren, W., Shi, P., Wu, X., and Yao, X., 2014. Effects of Thickness on Structures and Electrical Properties of Mn-Doped K0.5Na0.5NbO3 Films. Journal of Alloys and Compounds, 582, pp. 759.763. 207. Wang, L., Zuo, R., Liu, L., Su, H., Shi, M., Chu, X., Wang, X., and Li, L., 2011. Preparation and Characterization of Sol.gel Derived (Li,Ta,Sb) Modified (K,Na)NbO3 Lead-Free Ferroelectric Thin Films. Materials Chemistry and Physics, 130(2), pp. 165.169. 208. Wang, Y., Wu, J., Xiao, D., Zhu, J., Yu, P., Wu, L., and Li, X., 2008. Piezoelectric Properties of (Li, Ag, Sb) Modified (K0.50Na0.50)NbO3 Lead-Free Ceramics. Journal of Alloys and Compounds, 462(2), pp. 310.314. 209. Watanabe, K., Ohsato, H., Kishi, H., and Okino, Y., 1998. Solubility of La.Mg and La.Al in BaTiO3. Solid State Ionics, 108, pp. 129.135. 210. Wu, J., Xiao, D., and Zhu, J., 2015. Potassium-Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chemical Reviews, 115(7), pp. 2559.2295. 211. Xie, X.D., Wang, Q., and Wang, S.J., 2015. Energy Harvesting from High-Rise Buildings by a Piezoelectric Harvester Device. Energy, 93, pp. 1345.1352. 212. Yang, F.W., Cheng, C.M., and Chen, K.H., 2012. Processing and Electrical Properties of Ta and Li-Modified KNN-Based Lead-Free Thin Films Prepared by the RF Sputtering Technology. Key Engineering Materials, 492, pp. 189-193. 213. Yao, L., Zhu, K., Wang, J., Liu, J., Qiu, J., Cheng, M., and Gu, Q., 2016. Annealing Temperature Effects on the Electrical Properties of (K, Na) NbO3 Thin Film Fabricated by a Sol-Gel Process with a Citrate Precursor Solution. Ferroelectrics, 493(1), pp. 47.53. 214. Yeon Soo Sung, and Myong Ho Kim, 2009. Effects of B-site Donor and Acceptor Doping in Pb-free (Bi0.5Na0.5)TiO3 Ceramics. Ferroelectrics, 3, pp.218.226. 215. Yin, N., Jalalian, A., Zhao, L., Gai, Z., Cheng, Z., and Wang, X., 2015. Correlation between Crystal Structures, Raman Scattering and Piezoelectric Properties of Lead-Free Na0.5K0.5NbO3. Journal of Alloys and Compounds, 652, pp. 341.345. 216. Yongping, P., Huijun, R., Wei, C., and Shoutian, C., 2005. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic. Journal of Rare Earths, 22(3), pp. 20.23. 217. Yoshino, Y., 2009. Piezoelectric Thin Films and Their Applications for Electronics. Journal of Applied Physics, 105(6), pp.1-7. 218. Yu, H., Zhou, J., Deng, L., and Wen, Z., 2014a. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit. Sensors, 14(2), pp. 3323.3341. 219. Yu, Q., Fu, W., Yu, C., Yang, H., Wei, R., Sui, Y., Liu, S., Liu, Z., Li, M., Wang, G., Shao, C., Liu, Y., and Zou, G., 2007. Structural, Electrical and Optical Properties of Yttrium-Doped ZnO Thin Films Prepared by Sol.gel Method. Journal of Physics D: Applied Physics, 40(18), pp. 5592.5597. 220. Yu, Q., Li, J.F., Chen, Y., Cheng, L.Q., Sun, W., Zhou, Z., and Wang, Z., 2014b. Effect of Pyrolysis Temperature on Sol-Gel Synthesis of Lead-Free Piezoelectric (K,Na)NbO3 Films on Nb:SrTiO3 Substrates. Journal of the American Ceramic Society, 97(1), pp. 107.113. 221. Yu, Y., Wu, J., Zhao, T., Dong, S., Gu, H., and Hu, Y., 2014c. MnO2 Doped PSN.PZN.PZT Piezoelectric Ceramics for Resonant Actuator Application. Journal of Alloys and Compound, 615, pp. 676.682. 222. Zhang, S., Xia, R., Shrout, T.R., Zang, G., and Wang, J., 2006. Piezoelectric Properties in Perovskite 0.948(K0.5Na0.5)NbO3.0.052LiSbO3 Lead-Free Ceramics. Journal of Applied Physics, 10, pp. 1-6. 223. Zhang, Y., Li, H.L., Zhou, J.J., Liu, H., and Fang, J.Z., 2015a. Enhanced Piezoelectric Coefficient and Mechanical Performance of Pb(Ni1/3Nb2/3)O3.PbZrO3.PbTiO3 Ferroelectric Ceramics by Pb(Mn1/3Sb2/3)O3 Modification. Ceramics International, 41(10), pp. 14101.14107. 224. Zhang, Y., Zhu, X., Zhu, J., Zeng, X., Feng, X., and Liao, J., 2015b. Composition Design, Phase Transitions and Electrical Properties of Sr2+-Substituted xPZN.0.1PNN.(0.9.x)PZT Piezoelectric Ceramics. Ceramics International, 41, pp.1.34. 225. Zhengfa, L., Yongxiang, L., and Jiwei, Z., 2011. Grain Growth and Piezoelectric Property of KNN-Based Lead-Free Ceramics. Current Applied Physics, 11(3), pp. 2.13. 226. Zhou, J.J., Li, J.F., and Zhang, X.W., 2012. Orthorhombic to Tetragonal Phase Transition due to Stress Release in (Li,Ta)-doped (K, Na)NbO3 Lead-Free Piezoceramics. Journal of the European Ceramic Society, 32(2), pp. 267.270. 227. Zhou, Y., Guo, M., Zhang, C., and Zhang, M., 2009. Hydrothermal Synthesis and Piezoelectric Property of Ta-Doping K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramic. Ceramics International, 35(8), pp. 3253.3258. 228. Zhu, Z., Li, G., Li, B., Yin, Q., and Jiang, K., 2008. The Influence of Yb and Nd Substituents on High-Power Piezoelectric Properties of PMS.PZT Ceramics. Ceramics International, 34(8), pp. 2067.2072. 229. Zidi, N., Chaouchi, A., D�fAstorg, S., Rguiti, M., and Courtois, C., 2014. Dielectric and Impedance Spectroscopy Characterizations of CuO Added (Na0.5Bi0.5)0.94Ba0.06TiO3 Lead-Free Piezoelectric Ceramics. Journal of Alloys and Compounds, 590, pp. 557.564.