Bingamawa, M. T. (2017). Enhancing Accuracy Of Credit Scoring Classification With Imbalance Data Using Synthetic Minority Oversampling Technique-Support Vector Machine (SMOTE-SVM) Model.
توثيق أسلوب شيكاغو (الطبعة السابعة عشر)Bingamawa, Muhammad Tosan. Enhancing Accuracy Of Credit Scoring Classification With Imbalance Data Using Synthetic Minority Oversampling Technique-Support Vector Machine (SMOTE-SVM) Model. 2017.
توثيق جمعية اللغة المعاصرة MLA (الطبعة الثامنة)Bingamawa, Muhammad Tosan. Enhancing Accuracy Of Credit Scoring Classification With Imbalance Data Using Synthetic Minority Oversampling Technique-Support Vector Machine (SMOTE-SVM) Model. 2017.
تحذير: قد لا تكون هذه الاستشهادات دائما دقيقة بنسبة 100%.