Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer

Liquid sensing application plays an important role in biological,chemical and food industries.A conventional electrical based sensor is exposed to electromagnetic interference (EMI) which generates the electrical sparks. Hence,the fiber optic sensor (FOS) has attracted a great interest in sensing ap...

全面介紹

Saved in:
書目詳細資料
主要作者: Sulaiman, Nur Hidayah
格式: Thesis
語言:English
English
出版: 2018
主題:
在線閱讀:http://eprints.utem.edu.my/id/eprint/23289/1/Sensitivity%20Enhancement%20Of%20Optical%20Fiber%20Sensor%20For%20Liquid%20Sensing%20Applications%20By%20Using%20Mach-Zehnder%20Interferometer.pdf
http://eprints.utem.edu.my/id/eprint/23289/2/Sensitivity%20Enhancement%20Of%20Optical%20Fiber%20Sensor%20For%20Liquid%20Sensing%20Applications%20By%20Using%20Mach-Zehnder%20Interferometer.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my-utem-ep.23289
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor ABDUL RAZAK, HANIM

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Sulaiman, Nur Hidayah
Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer
description Liquid sensing application plays an important role in biological,chemical and food industries.A conventional electrical based sensor is exposed to electromagnetic interference (EMI) which generates the electrical sparks. Hence,the fiber optic sensor (FOS) has attracted a great interest in sensing applications due to the immunity to EMI,high sensitivity and compact size.Interferometer is commonly used in the development of the FOS in liquid measuring system.In this research project,the FOS has been employed for liquid sensing application by using a Mach–Zehnder Interferometer (MZI).There are two main MZI structures that involved in this research,which are Singlemode-Multimode-Singlemode (SMS) and Multimode-Singlemode-Multimode (MSM) structure that provides low cost of fabrication.The device was developed by using simple and less complex fabrication which is fusion arc splicing technique for splicing the three main sections of FOS.The sensitivity analysis was tested on different liquid concentration such as water,1.0 mol sucrose and oil with the refractive index of 1.333 RIU,1.384 RIU and 1.464 RIU respectively.This research manipulated the sensing-region section to analyze the response of FOS towards different liquid concentration.Firstly,the length of the sensing region was varied to 4 cm,8 cm and 12 cm prior to sensitivity enhancement method.The resultant of resonance wavelength shifting generates different sensitivity and the length of the sensor area which demonstrated the highest sensitivity was selected for the next sensitivity enhancement process.The sensitivity enhancement process for this research is based on the chemical etching and macrobending effect that aimed to generate more evanescence field at the sensing region. According to the etching process analysis,time taken for each sensing-region to reach 55 μm diameter was 16 minutes for SMS structure and 23 minutes for MSM structure.Meanwhile for the macrobending effect,the sensing-region with a bending diameter of 2.8 cm,3.3 cm and 4.0 cm were analyzed.The results of the FOS with and without the sensitivity enhancement were observed.This research demonstrated improvement sensitivity by 1663.31% for SMS structure and 827.08% for MSM structure.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Sulaiman, Nur Hidayah
author_facet Sulaiman, Nur Hidayah
author_sort Sulaiman, Nur Hidayah
title Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer
title_short Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer
title_full Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer
title_fullStr Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer
title_full_unstemmed Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer
title_sort sensitivity enhancement of optical fiber sensor for liquid sensing applications by using mach-zehnder interferometer
granting_institution UTeM
granting_department Faculty Of Electronic And Computer Engineering
publishDate 2018
url http://eprints.utem.edu.my/id/eprint/23289/1/Sensitivity%20Enhancement%20Of%20Optical%20Fiber%20Sensor%20For%20Liquid%20Sensing%20Applications%20By%20Using%20Mach-Zehnder%20Interferometer.pdf
http://eprints.utem.edu.my/id/eprint/23289/2/Sensitivity%20Enhancement%20Of%20Optical%20Fiber%20Sensor%20For%20Liquid%20Sensing%20Applications%20By%20Using%20Mach-Zehnder%20Interferometer.pdf
_version_ 1747834028170412032
spelling my-utem-ep.232892022-03-16T16:18:40Z Sensitivity Enhancement Of Optical Fiber Sensor For Liquid Sensing Applications By Using Mach-Zehnder Interferometer 2018 Sulaiman, Nur Hidayah T Technology (General) TA Engineering (General). Civil engineering (General) Liquid sensing application plays an important role in biological,chemical and food industries.A conventional electrical based sensor is exposed to electromagnetic interference (EMI) which generates the electrical sparks. Hence,the fiber optic sensor (FOS) has attracted a great interest in sensing applications due to the immunity to EMI,high sensitivity and compact size.Interferometer is commonly used in the development of the FOS in liquid measuring system.In this research project,the FOS has been employed for liquid sensing application by using a Mach–Zehnder Interferometer (MZI).There are two main MZI structures that involved in this research,which are Singlemode-Multimode-Singlemode (SMS) and Multimode-Singlemode-Multimode (MSM) structure that provides low cost of fabrication.The device was developed by using simple and less complex fabrication which is fusion arc splicing technique for splicing the three main sections of FOS.The sensitivity analysis was tested on different liquid concentration such as water,1.0 mol sucrose and oil with the refractive index of 1.333 RIU,1.384 RIU and 1.464 RIU respectively.This research manipulated the sensing-region section to analyze the response of FOS towards different liquid concentration.Firstly,the length of the sensing region was varied to 4 cm,8 cm and 12 cm prior to sensitivity enhancement method.The resultant of resonance wavelength shifting generates different sensitivity and the length of the sensor area which demonstrated the highest sensitivity was selected for the next sensitivity enhancement process.The sensitivity enhancement process for this research is based on the chemical etching and macrobending effect that aimed to generate more evanescence field at the sensing region. According to the etching process analysis,time taken for each sensing-region to reach 55 μm diameter was 16 minutes for SMS structure and 23 minutes for MSM structure.Meanwhile for the macrobending effect,the sensing-region with a bending diameter of 2.8 cm,3.3 cm and 4.0 cm were analyzed.The results of the FOS with and without the sensitivity enhancement were observed.This research demonstrated improvement sensitivity by 1663.31% for SMS structure and 827.08% for MSM structure. 2018 Thesis http://eprints.utem.edu.my/id/eprint/23289/ http://eprints.utem.edu.my/id/eprint/23289/1/Sensitivity%20Enhancement%20Of%20Optical%20Fiber%20Sensor%20For%20Liquid%20Sensing%20Applications%20By%20Using%20Mach-Zehnder%20Interferometer.pdf text en public http://eprints.utem.edu.my/id/eprint/23289/2/Sensitivity%20Enhancement%20Of%20Optical%20Fiber%20Sensor%20For%20Liquid%20Sensing%20Applications%20By%20Using%20Mach-Zehnder%20Interferometer.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=112729 mphil masters UTeM Faculty Of Electronic And Computer Engineering ABDUL RAZAK, HANIM 1. Ahmad, H., Chong, W.Y., Thambiratnam, K., Zulklifi, M.Z., Poopalan, P., Thant, M.M.M., Harun, S.W., and Muang, M., 2009. High Sensitivity Fiber Bragg Grating Pressure Sensor Using Thin Metal Diaphragm. JSEN_IEEE Sensors Journal (JSEN), 9 (12), pp.1654–1659. 2. Ahmed, F. and Jun, M.B.G., 2015. Tapered photonic crystal fiber based Mach-Zehnder interferometer for enhanced refractive index sensing. 2015 IEEE Sensors, pp.1–4. 3. Allsop, T., Reeves, R., Webb, and Bennion, I., 2002. A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Review of Scientific Instruments, 73 (4), pp.1702. 4. Azad, S., Sadeghi, E., Parvizi, R., Mazaheri, A., and Yousefi, M., 2017. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter. Optics and Laser Technology, 90 (September 2016), pp.96– 101. 5. Baharin, N.F., Sidek, N., Musa, S.M.A., Azmi, A.I., Abdullah, A.S., Noor, M.Y.M., and Roslan, M.E.M., 2016. Hollow-Core Photonic Crystal Fiber Refractive Index. ARPN Journal of Engineering and Applied Sciences, 11 (9), pp.5702–5706. 6. Bhardwaj, V., Kishor, K., and Singh, V.K., 2017. Experimental and Theoretical Analysis of Connector Offset Optical Fiber Refractive Index Sensor. Plasmonics, 12 (6), pp.1999–103 2004. 7. Bhardwaj, V. and Singh, V.K., 2016. Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing. Sensors and Actuators, A: Physical, 244, pp.30–34. 8. Cai, L., Zhao, Y., and Li, X.-G., 2014. Applications of Modal Interferences in Optical Fiber Sensors Based on Mismatch Methods. Instrumentation Science & Technology, 43 (1), pp.1–20. 9. Cao, Y., Liu, H., Tong, Z., Yuan, S., and Su, J., 2015. Simultaneous measurement of temperature and refractive index based on a Mach-Zehnder interferometer cascaded with a fiber Bragg grating. Optics Communications, 342, pp.180–183. 10. Chen, J.-H., Zhao, J.-R., Huang, X.-G., and Huang, Z.-J., 2010. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass. Applied optics, 49 (29), pp.5592–6. 11. Dai, Y., 2012. Highly sensitive liquid-level sensor based on weak uniform fiber Bragg grating with narrow-bandwidth. Optical Engineering, 51 (4), pp.044401. 12. Fidanboylu, K. and Efendioglu, H., 2009. Fiber optic sensors and their applications. Proceedings of 5th International Advance technologies Symposium (IATS’09)May 13- 15,Karabuk, Turkey, (May), pp.199–201.104 13. Fu, X. hu, Zhang, J. peng, Yang, K. li, Dong, Y. hua, Wen, J. xiang, Fu, G. wei, and Bi, W. hong, 2017. A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer. Optoelectronics Letters, 13 (2), pp.135–137. 14. Gangwar, R.K. and Singh, V.K., 2016. Highly Sensitive Surface Plasmon Resonance Based D-Shaped Photonic Crystal Fiber Refractive Index Sensor. Plasmonics, pp.1–6. 15. Geng, Y., Li, X., Tan, X., Deng, Y., and Yu, Y., 2011. High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a Waist-Enlarged fusion bitaper. IEEE Sensors Journal, 11 (11), pp.2891–2894. 16. Ghahrizjani, R.T., Sadeghi, H., and Mazaheri, A., 2016. A Novel Method for onLine Monitoring Engine Oil Quality Based on Tapered Optical Fiber Sensor, 16 (10), pp.3551– 3555. 17. Gomes, A.D. and Frazão, O., 2016. Mach-Zehnder Based on Large Knot Fiber Resonator for Refractive Index Measurement. IEEE Photonics Technology Letters, 28 (12), pp.1279– 1281. 18. Gong, H., Song, H., Zhang, S., Ni, K., and Dong, X., 2014. An optical liquid level sensor based on polarization-maintaining fiber modal interferometer. Sensors and Actuators, A: Physical, 205, pp.204–207. 19. Gong, H., Yang, P., Song, H., Ni, K., and Dong, X., 2015. A refractive index sensor based on in-line modal interferometer with waist-enlarge fusion splicing. Optik, 126 (21),105 pp.3058–3060. 20. Guzmán-Sepúlveda, J.R., Guzmán-Cabrera, R., Torres-Cisneros, M., Sánchez-Mondragón, J.J., and May-Arrioja, D.A., 2013. A highly sensitive fiber optic sensor based on two-core fiber for refractive index measurement. Sensors (Basel, Switzerland), 13 (10), pp.14200– 14213. 21. Hao Sun, Yang, S., Jing Zhang, Qiangzhou Rong, Liang, L., Xu, Q., Xiang, G., Feng, D., Du, Y., Feng, Z., Qiao, X., and Hu, M., 2012. Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure. Optical Fiber Technology, 18 (6), pp.425–429. 22. Harris, J., Lu, P., Larocque, H., Chen, L., and Bao, X., 2015. In-fiber Mach-Zehnder interferometric refractive index sensors with guided and leaky modes. Sensors and Actuators, B: Chemical, 206, pp.246–251. 23. Hernandez-Arriaga, M. V., Bello-Jimenez, M.A., Rodriguez-Cobos, A., Lopez-Estopier, R., and Andres, M. V., 2017. High Sensitivity Refractive Index Sensor Based on Highly Overcoupled Tapered Fiber-Optic Couplers. IEEE Sensors Journal, 17 (2), pp.333–339. 24. Iadicicco, A., Campopiano, S., Cutolo, A., Giordano, M., and Cusano, A., 2005. Refractive index sensor based on microstructured fiber Bragg grating. IEEE Photonics Technology Letters, 17 (6), pp.1250–1252. 25. Iadicicco, A., Cusano, A., A. Cutolo, Bernini, R., and Giordano, M., 2004. Thinned fiber106 Bragg gratings as high sensitivity refractive index sensor. IEEE Photonics Technology Letters, 16 (4), pp.1149–1151. 26. Jasim, A.A., Hayashi, N., Harun, S.W., Ahmad, H., Penny, R., Mizuno, Y., and Nakamura, K., 2014. Refractive index and strain sensing using inline Mach-Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber. Sensors and Actuators, A: Physical, 219, pp.94–99. 27. Jáuregui-Vázquez, D., Estudillo-Ayala, J.M., Rojas-Laguna, R., Vargas-Rodr, E., SierraHernández, J.M., Hernández-García, J.C., and Mata-Chávez, R.I., 2013. An all fiber intrinsic Fabry-Perot interferometer based on an air-microcavity. Sensors (Switzerland), 13 (5), pp.6355–6364. 28. Jay, J., 2010. An overview of macrobending and microbending of optical fibers. White Paper WP1212, Corning, (December). 29. Jiang, X., Song, Q., Xu, L., Fu, J., and Tong, L., 2007a. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Applied Physics Letters, 90 (23), pp.88–91. 30. Jiang, X., Tong, L., Song, Q., and Xu, L., 2007b. Evanescent-wave pumped microfiber knot laser. Conference on Lasers and Electro-Optics, 2007, CLEO 2007, pp.2–3. 31. Jiang, X., Tong, L., Vienne, G., Guo, X., Tsao, A., Yang, Q., and Yang, D., 2006a. Demonstration of optical microfiber knot resonators. Applied Physics Letters, 88 (22), pp.22–25.107 32. Jiang, X., Yang, Q., Vienne, G., Li, Y., Tong, L., Zhang, J., and Hu, L., 2006b. Demonstration of microfiber knot laser. Applied Physics Letters, 89 (14), pp.1–4. 33. Jiao, L.Z., Dong, D.M., Zheng, W.G., Wu, W.B., Shen, C.J., and Yan, H., 2013. Research on fiber-optic etching method for evanescent wave sensors. Optik, 124 (8), pp.740–743. 34. Jing, N., Jie Zheng, Zhao, X., and Teng, C., 2015. Refractive Index Sensing Based on a Side-Polished Macrobending Plastic Optical Fiber, 15 (5), pp.2898–2901. 35. Jing li Fan, Jisngshan Zhang, Ping LuMing Tian, Jun Xu, and Liu, D., 2014. A singlemode fiber sensor based on core-offset inter-modal interferometer. Optics Communications, 320, pp.33–37. 36. Jun Su, Zhengrong Tong, Ye Cao, W.Z., 2014. High sensitivity multimode-multimodemultimode structure fiber sensor based on modal interference. Optics Communications, 315, pp.112–115. 37. Kang, J., Dong, X., Zhao, C., and Zhao, Y., 2011. A sagnac loop sensor for refractive index measurement. 2011 Symposium on Photonics and Optoelectronics, SOPO 2011, pp.0–3. 38. Krohn, D., MacDougall, T., and Alexis, M., 2014a. Fiber Optic Sensors Funfamentals and Applications. 4th ed. Bellingam, Washington USA: SPIE PRESS.108 39. Lee, B.H., Young Ho Kim, Park, K.S., Eom, J.B., Kim, M.J., Rho, B.S., and Choi, H.Y., 2012. Interferometric fiber optic sensors. Sensors, 12 (3), pp.2467–2486. 40. Leung, A., Shankar, P.M., and Mutharasan, R., 2007. A review of fiber-optic biosensors. Sensors and Actuators, B: Chemical, 125 (2), pp.688–703. 41. Li, J., Chen, F., Li, H., Hu, H., and Zhao, Y., 2017a. Investigation on high sensitivity RI sensor based on PMF. Sensors and Actuators, B: Chemical, 242, pp.1021–1026. 42. Li, J., Li, H., Hu, H., and Yao, C., 2017b. Refractive index sensor based on silica microfiber doped with Ag microparticles. Optics and Laser Technology, 94, pp.40–44. 43. Liang, Y.C., Liao, C.C., and Lo, Y.L., 2014. Abrupt taper Michelson interferometer using heterodyne for measuring refractive index. IEEE Photonics Technology Letters, 26 (23), pp.2330–2333. 44. Liao, C.R., Wang, D.N., He, X., and Yang, M.W., 2011. Twisted optical microfibers for refractive index sensing. IEEE Photonics Technology Letters, 23 (13), pp.848–850. 45. Liu, N., Hu, M., Sun, H., Gang, T., Yang, Z., Rong, Q., and Qiao, X., 2016. A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer. Optics Communications, 367, pp.1–5. 46. Liu, X., Zheng, J., Yang, J., Li, Y., and Dong, X., 2015. Refractive index sensor based on combination of tilted fiber Bragg grating and waist-enlarged fusion bitaper. Optics109 Communications, 356, pp.571–573. 47. Ma, Y., Qiao, X., Guo, T., Wang, R., Zhang, J., Weng, Y., Rong, Q., Hu, M., and Feng, Z., 2012. Mach-Zehnder interferometer based on a sandwich fiber structure for refractive index measurement. IEEE Sensors Journal, 12 (6), pp.2081–2085. 48. Marcuse, D., 1976. Curvature loss formula for optical fibers. Journal of the Optical Society of America, 66 (3), pp.216. 49. Mohd Saad, N.R., 2009. Fiber Optic Microbend Sensor, (April). 50. Nguyen, L.V., Hwang, D., Moon, S., Moon, D.S., and Chung, Y., 2008. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics express, 16 (15), pp.11369–11375. 51. Ou, Z., Yu, Y., Yan, P., Wang, J., Huang, Q., Chen, X., Du, C., and Wei, H., 2013. Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing. Optics Express, 21 (20), pp.23812. 52. Padron, I., 2016. Interferometry-Research and Applications in Science and Technology. 53. Pathak, A.K. and Singh, V.K., 2018. Investigations on sensing properties of tapered photonic crystal fiber refractive index sensor, 56 (May), pp.373–378. 54. Pedrotti, F.L., Pedrotti, L.M., and Pedrotti, L.S., 2013. Introduction To Optics, pp.672.110 Pérez, M. a, González, O., and Arias, J.R., 2013. Optical Fiber Sensors for Chemical and Biological Measurements. Current Developments in Optical Fiber Technology, pp.265– 292. 55. Pu, S. and Dong, S., 2014. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints. IEEE Photonics Journal, 6 (4), pp.734–741. 56. Rajan, G., 2010. Optical Fiber Sensors Advanced Techniques and Applications, pp.564. 57. Rajan, G. and Prusty, B.G., 2016. Structural Health Monitoring of Composite Structures Using Fiber Optic Methods. 58. Raymond H. Myers, Douglas C. Montgomery, G.G.V.-, n.d. Generalized Linear Models With Applications in Engineering and the Sciences. 59. Rofi’ah, I., Hatta, A.M., and Sekartedjo, S., 2016. Multimode-singlemode-multimode fiber sensor for alcohol sensing application, 10150 (ISPhOA), pp.101501D. 60. Schubert, T., Haase, N., and Ktick, H., 1997. Refractive-index measurements using an integrated Mach-Zehnder interferorneter. Sensors And Actuators, 60 (100), pp.108–112. 61. Shahami Shaharuddin, Siti Azlida binti Ibrahim, and Dambul, K.D., 2016. Sensitivity Improvement in a Fiber Macrobending Refractive Index Sensor, pp.3–5.111 62. Sharma, U. and Wei, X., 2013. Fiber Optic Sensing and Imaging, pp.29–54. 63. Shi, J., Xiao, S., Yi, L., Bi, M., and State, 2012. A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper. Sensors, 12 (4), pp.4697–4705. 64. Sinchenko, E., Gibbs, W.E.K., Mazzolini, A.P., and Stoddart, P.R., 2013. The Effect of the cladding refractive index on an optical fiber evanescent-wave sensor. Journal of Lightwave Technology, 31 (20), pp.3251–3257. 65. Soltanian, M.R.K., Sharbirin, A.S., Ariannejad, M.M., Amiri, I.S., De La Rue, R.M., Brambilla, G., Rahman, B.M.A., Grattan, K.T.V., and Ahmad, H., 2016. Variable WaistDiameter Mach-Zehnder Tapered-Fiber Interferometer as Humidity and Temperature 66. Sensor. IEEE Sensors Journal, 16 (15), pp.5987–5992. 67. Sun, X., Dong, X., Hu, Y., Li, H., Chu, D., Zhou, J., Wang, C., and Duan, J., 2015. A robust high refractive index sensitivity fiber Mach – Zehnder interferometer fabricated by femtosecond laser machining and chemical etching. Sensors & Actuators: A. Physical, 230, pp.111–116. 68. Tao Li, Donga, X., Chanb, C.C., Hua, L., and Qian, W., 2012. Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating. Optics Communications, 285 (24), pp.4874–4877. 69. Thévenaz, L., 2011. Advanced Fiber Optics.112 70. Thyagarajan, K. and Ghatak, A., 2007a. Fiber Optic Essentials. Fiber Optic Essentials. 71. Thyagarajan, K. and Ghatak, A., 2007b. Fiber Optic Essentials. Wiley-Interscience. 72. Tian, Z., Yam, S.S.-H., Barnes, J., Bock, W., Greig, P., Fraser, J.M., Loock, H.-P., and Oleschuk, R.D., 2008. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technology Letters, 20 (8), pp.626–628. 73. Tong, Z. rong, Wang, J. yu, Zhang, W. hua, and Cao, Y., 2013. Simultaneous measurement of refractive index, temperature and strain based on core diameter mismatch and polarization-maintaining FBG. Optoelectronics Letters, 9 (3), pp.238–240. 74. Udd, E. and Spillman, W.B., 2011. Fiber optic sensors : an introduction for engineers and scientists. 75. Usha, S.P., Mishra, S.K., and Gupta, B.D., 2015. Sensors and Actuators B : Chemical Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film / ZnO nanoparticles : A comparison of surface plasmon resonance and lossy mode resonance. Sensors & Actuators: B. Chemical, 218, pp.196–204. 76. Vargas-Rodriguez, E., Guzman-Chavez, A.D., Cano-Contreras, M., Gallegos-Arellano, E., Jauregui-Vazquez, D., Hernández-García, J.C., Estudillo-Ayala, J.M., and Rojas-Laguna, R., 2015. Analytical modelling of a refractive index sensor based on an intrinsic micro113 Fabry-Perot interferometer. Sensors (Basel, Switzerland), 15 (10), pp.26128–42. 77. Villatoro, J., Finazzi, V., Badenes, G., and Pruneri, V., 2009. Highly sensitive sensors based on photonic crystal fiber modal interferometers. Journal of Sensors, 2009. 78. Villatoro, J. and Monzón-Hernández, D., 2006. Low-Cost Optical Fiber Refractive-Index Sensor Based on Core Diameter Mismatch, 24 (3), pp.1409–1413. 79. Wang, H., Meng, H., Xiong, R., Wang, Q., Huang, B., Zhang, X., Yu, W., Tan, C., and Huang, X., 2016a. Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference. Optics Communications, 364, pp.191–194. 80. Wang, J., Yongxing Jin, Yu Zhao, and Dong, X., 2013. Refractive index sensor based on all-fiber multimode interference. Optik - International Journal for Light and Electron Optics, 124 (14), pp.1845–1848. 81. Wang, P., Brambilla, G., Ding, M., Semenova, Y., Wu, Q., and Farrell, G., 2011. Highsensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Optics letters, 36 (12), pp.2233–2235. 82. Wang, P., Semenova, Y., Li, Y., Wu, Q., and Farrell, G., 2010. A macrobending singlemode fiber refractive index sensor for low refractive index liquids. Photonics Letters of Poland, 2 (2), pp.67–69. 83. Wang, Q., Wei, W., Guo, M., and Zhao, Y., 2016b. Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology. Sensors and114 Actuators, B: Chemical, 222, pp.159–165. 84. Wang, Y., Shen, C., Lou, W., and Shentu, F., 2016c. Intensity modulation type fi ber-opti strain sensor based on a Mach – Zehnder interferometer constructed by an up-taper with a LPG. Optics Communications, 364, pp.72–75. 85. Wang, Y., Shen, C., Lou, W., and Shentu, F., 2016d. Polarization-dependent refractive index fiber-optic sensor based on the core-offset with a taper. Journal of Physics: Conference Series, 680 (1). 86. Wei, H., Zhu, Y., and Krishnaswamy, S., 2016. Optofluidic Photonic Crystal Fiber Coupler for Measuring the Refractive Index of Liquids. IEEE Photonics Technology Letters, 28 (1), pp.103–106. 87. Wo, J., Sun, Q., Liu, H., Li, X., Zhang, J., Liu, D., and Shum, P.P., 2013. Sensitivityenhanced fiber optic temperature sensor with strain response suppression. Optical Fiber Technology, 19 (4), pp.289–292. 88. Wo, J., Wang, G., Cui, Y., Sun, Q., Liang, R., Shum, P.P., and Liu, D., 2012. Refractive index sensor using microfiber-based Mach–Zehnder interferometer. Optics Letters, 37 (1), pp.67. 89. Wu, D., Zhu, T., Guo-Yin Wang, Jian-Yu Fu, Lin, X.-G., and Gou, G.-L., 2013. Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber. Applied optics, 52 (12), pp.2670–5.115 90. Wu, Q., Semenova, Y., Wang, P., and Farrell, G., 2011a. High sensitivity SMS fiber structure based refractometer – analysis and experiment. Optics Express, 19 (9), pp.7937. 91. Wu, Q., Semenova, Y., Wang, P., and Farrell, G., 2011b. High sensitivity SMS fiber structure based refractometer - analysis and experiment. Optics express, 19 (9), pp.7937– 7944. 92. Xian, P., Feng, G., Ju, Y., Zhang, W., and Zhou, S., 2017. Single-mode all-fiber structured modal interference for temperature and refractive index sensing. Laser Physics Letters, 14 (8). 93. Xiao, S., Wu, Y., Dong, Y., Xiao, H., Jiang, Y., Jin, W., Li, H., and Jian, S., 2017. Simultaneous measurement of refractive index and temperature using SMP in Sagnac loop. Optics and Laser Technology, 96, pp.254–258. 94. Xu, Z., Sun, Q., Wo, J., Dai, Y., Li, X., and Liu, D., 2013. Volume strain sensor based on spectra analysis of in-fiber modal interferometer. IEEE Sensors Journal, 13 (6), pp.2139– 95. 2145. 96. Xue, L., Yang, L., and Member, S., 2012. Sensitivity Enhancement of RI Sensor Based on SMS Fiber Structure With High Refractive Index Overlay, 30 (10), pp.1463–1469. 97. Yang, M., Peng, J., Wang, G., and Dai, J., 2017. Fiber Optic Sensors Current Status and Future Possibilities. Fiber Optic Sensors.116 98. Yao, Q., Meng, H., Wang, W., Xue, H., Xiong, R., Huang, B., Tan, C., and Huang, X., 2014. Simultaneous measurement of refractive index and temperature based on a coreoffset Mach-Zehnder interferometer combined with a fiber Bragg grating. Sensors and Actuators, A: Physical, 209, pp.73–77. 99. Yin, Francis T. S., S.Y. and Udd, E., 2002. Overview of Fiber Optic Sensors. Fiber Optic Sensors. 100. Yin, S., Ruffin, P.B., and Yu, F.T.S., 2008. Fiber optic sensors. CRC Press Taylor and Francis Group. 101. Yio, S., Ruffin, P.B., Yu, F.T.S., and Yin, S., 2008. Fiber Optic Sensors. 102. Yong Zhao, Lu Cai, and Xue-Gang Li, 2015. High Sensitive Modal Interferometer for Temperature and Refractive Index Measurement. IEEE Photonics Technology Letters, 27 (12), pp.1341–1344. 103. Yu, Q. and Zhou, X., 2011. Pressure sensor based on the fiber-optic extrinsic fabry-perot interferometer. Photonic Sensors, 1 (1), pp.72–83. 104. Yu, X., Chen, X., Bu, D., Zhang, J., and Liu, S., 2016. In-fiber modal interferometer for simultaneous measurement of refractive index and temperature. IEEE Photonics Technology Letters, 28 (2), pp.189–192. 105. Zendehnam A., M Mirzael, A Farashiani, and Horabadi Farahani, 2010. Investigation of117 bending loss in a single-mode optical fibre. Pramana - Journal of Physics, 74 (4), pp.591– 603. 106. Zhang, C., Ning, T., Li, J., Pei, L., Li, C., and Lin, H., 2017a. Optical Fiber Technology Refractive index Sensor Based on Tapered Multicore Fiber. Optical Fiber Technology, 33, pp.71–76. 107. Zhang, S., Yuan, T., and Yuan, L., 2017b. Asymmetrical twin-core fiber based Michelson interferometer for environmental refractive index sensing, 10323, pp.1032377. 108. Zhao, R., Lang, T., Chen, J., and Hu, J., 2017. Polarization-maintaining fiber sensor for simultaneous measurement of the temperature and refractive index. Optical Engineering, 56 (5), pp.057113. 109. Zhao, Y., Li, X.G., Cai, L., and Yang, Y., 2015. Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sensors and Actuators, B: Chemical, 221, pp.406–410. 110. Zhou, J., Wang, Y., Liao, C., Sun, B., He, J., Yin, G., Liu, S., Li, Z., Wang, G., Zhong, X., and Zhao, J., 2015. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sensors and Actuators, B: Chemical, 208, pp.315–319. 111. Zhu, S., Pang, F., Huang, S., Zou, F., Dong, Y., and Wang, T., 2015. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Optics Express, 23 (11), pp.13880–13888.118 112. Zibaii, M.I., Kazemi, A., Latifi, H., Azar, M.K., Hosseini, S.M., and Ghezelaiagh, M.H., 2010. Measuring bacterial growth by refractive index tapered fiber optic biosensor. Journal of Photochemistry and Photobiology B: Biology, 101 (3), pp.313–320. 113. Zulkifli, A.Z., Masnan, S.E.F., Azmi, N.M., Akib, S.M., Arof, H., and Harun, S.W., 2016. A simple load sensor based on a bent single-mode-multimode-single-mode fiber structure. Sensors and Actuators, A: Physical, 242, pp.106–110