Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics

Optimization is a crucial process to select the best parameters in single and multi-objective problems for manufacturing process.However,it is difficult to find an optimization algorithm that obtain the global optimum for every optimization problem.Artificial Bees Colony (ABC) is a well-known swarm...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammad Jarrah, Mu'ath Ibrahim
Format: Thesis
Language:English
English
Published: 2018
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/23357/1/Hybrid%20Artificial%20Bees%20Colony%20Algorithms%20For%20Optimizing%20Carbon%20Nanotubes%20Characteristics.pdf
http://eprints.utem.edu.my/id/eprint/23357/2/Hybrid%20Artificial%20Bees%20Colony%20Algorithms%20For%20Optimizing%20Carbon%20Nanotubes%20Characteristics.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.23357
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Mohammad Jarrah, Mu'ath Ibrahim
Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics
description Optimization is a crucial process to select the best parameters in single and multi-objective problems for manufacturing process.However,it is difficult to find an optimization algorithm that obtain the global optimum for every optimization problem.Artificial Bees Colony (ABC) is a well-known swarm intelligence algorithm in solving optimization problems.It has noticeably shown better performance compared to the state-of-art algorithms.This study proposes a novel hybrid ABC algorithm with β-Hill Climbing (βHC) technique (ABC-βHC) in order to enhance the exploitation and exploration process of the ABC in optimizing carbon nanotubes (CNTs) characteristics.CNTs are widely used in electronic and mechanical products due to its fascinating material with extraordinary mechanical,thermal,physical and electrical properties. Chemical Vapor Deposition (CVD) is the most efficient method for CNTs production.However,using CVD method encounters crucial issues such as customization,time and cost.Therefore,Response Surface Methodology (RSM) is proposed for modeling and the ABC-βHC is proposed for optimization purpose to address such issues.The selected CNTs characteristics are CNTs yield and quality represented by the ratio of the relative intensity of the D and G-bands (ID/IG).Six case studies are generated from collected dataset including four cases of CNTs yield and one case of ID/IG as single objective optimization problems,while the sixth case represents multi-objective problem.The input parameters of each case are a subset from the set of input parameters including reaction temperature,duration,carbon dioxide flow rate,methane partial pressure,catalyst loading,polymer weight and catalyst weight.The models for the first three case studies were mentioned in the original work.RSM is proposed to develop polynomial models for the output responses in the other three cases and to identi significant process parameters and interactions that could affect the CNTs output responses.The developed models are validated using t-test,correlation and pattern matching.The predictive results have a good agreement with the actual experimental data.The models are used as objective functions in optimization techniques.For multi-objective optimization,this study proposes Desirability Function Approach (DFA) to be integrated with other proposed algorithms to form hybrid techniques namely RSM-DFA,ABC-DFA and ABC-βHC-DFA.The proposed algorithms and other selected well-known algorithms are evaluated and compared on their CNTs yield and quality.The optimization results reveal that ABC-βHC and ABC-βHC-DFA obtained significant results in terms of success rate,required time,iterations,and function evaluations number compared to other well-known algorithms.Significantly,the optimization results from this study are better than the results from the original work of the collected dataset.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Mohammad Jarrah, Mu'ath Ibrahim
author_facet Mohammad Jarrah, Mu'ath Ibrahim
author_sort Mohammad Jarrah, Mu'ath Ibrahim
title Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics
title_short Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics
title_full Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics
title_fullStr Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics
title_full_unstemmed Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics
title_sort hybrid artificial bees colony algorithms for optimizing carbon nanotubes characteristics
granting_institution UTeM
granting_department Faculty Of Information And Communication Technology
publishDate 2018
url http://eprints.utem.edu.my/id/eprint/23357/1/Hybrid%20Artificial%20Bees%20Colony%20Algorithms%20For%20Optimizing%20Carbon%20Nanotubes%20Characteristics.pdf
http://eprints.utem.edu.my/id/eprint/23357/2/Hybrid%20Artificial%20Bees%20Colony%20Algorithms%20For%20Optimizing%20Carbon%20Nanotubes%20Characteristics.pdf
_version_ 1747834042938556416
spelling my-utem-ep.233572022-02-21T12:19:19Z Hybrid Artificial Bees Colony Algorithms For Optimizing Carbon Nanotubes Characteristics 2018 Mohammad Jarrah, Mu'ath Ibrahim T Technology (General) TA Engineering (General). Civil engineering (General) Optimization is a crucial process to select the best parameters in single and multi-objective problems for manufacturing process.However,it is difficult to find an optimization algorithm that obtain the global optimum for every optimization problem.Artificial Bees Colony (ABC) is a well-known swarm intelligence algorithm in solving optimization problems.It has noticeably shown better performance compared to the state-of-art algorithms.This study proposes a novel hybrid ABC algorithm with β-Hill Climbing (βHC) technique (ABC-βHC) in order to enhance the exploitation and exploration process of the ABC in optimizing carbon nanotubes (CNTs) characteristics.CNTs are widely used in electronic and mechanical products due to its fascinating material with extraordinary mechanical,thermal,physical and electrical properties. Chemical Vapor Deposition (CVD) is the most efficient method for CNTs production.However,using CVD method encounters crucial issues such as customization,time and cost.Therefore,Response Surface Methodology (RSM) is proposed for modeling and the ABC-βHC is proposed for optimization purpose to address such issues.The selected CNTs characteristics are CNTs yield and quality represented by the ratio of the relative intensity of the D and G-bands (ID/IG).Six case studies are generated from collected dataset including four cases of CNTs yield and one case of ID/IG as single objective optimization problems,while the sixth case represents multi-objective problem.The input parameters of each case are a subset from the set of input parameters including reaction temperature,duration,carbon dioxide flow rate,methane partial pressure,catalyst loading,polymer weight and catalyst weight.The models for the first three case studies were mentioned in the original work.RSM is proposed to develop polynomial models for the output responses in the other three cases and to identi significant process parameters and interactions that could affect the CNTs output responses.The developed models are validated using t-test,correlation and pattern matching.The predictive results have a good agreement with the actual experimental data.The models are used as objective functions in optimization techniques.For multi-objective optimization,this study proposes Desirability Function Approach (DFA) to be integrated with other proposed algorithms to form hybrid techniques namely RSM-DFA,ABC-DFA and ABC-βHC-DFA.The proposed algorithms and other selected well-known algorithms are evaluated and compared on their CNTs yield and quality.The optimization results reveal that ABC-βHC and ABC-βHC-DFA obtained significant results in terms of success rate,required time,iterations,and function evaluations number compared to other well-known algorithms.Significantly,the optimization results from this study are better than the results from the original work of the collected dataset. 2018 Thesis http://eprints.utem.edu.my/id/eprint/23357/ http://eprints.utem.edu.my/id/eprint/23357/1/Hybrid%20Artificial%20Bees%20Colony%20Algorithms%20For%20Optimizing%20Carbon%20Nanotubes%20Characteristics.pdf text en public http://eprints.utem.edu.my/id/eprint/23357/2/Hybrid%20Artificial%20Bees%20Colony%20Algorithms%20For%20Optimizing%20Carbon%20Nanotubes%20Characteristics.pdf text en validuser http://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=113291 phd doctoral UTeM Faculty Of Information And Communication Technology 1. Abad, S. N. K., Ganjeh, E., Zolriasatein, A., Shabani-Nia, F., & Siadati, M. H. Predicting carbon nanotube diameter using artificial neural network along with characterization and field emission measurement, Iranian Journal of Science and Technology, Transaction A: Science. Springer International Publishing, 41(1). 2. Abarghouei, A. A., Ghanizadeh, A. and Shamsuddin, S. M., 2009. Advances of Soft Computing Methods in Edge Detection’, Int. J. Advance. Soft Comput. Appl, 1(2), pp. 162–203. 3. Abbasi, M., Niaei, A., Salari, D., Hosseini, S. A., Abedini, F., & Marmarshahi, S., 2017. Modeling and optimization of synthesis parameters in nanostructure La1−xBaxNi1−yCuyO3 catalysts used in the reforming of methane with CO2, Journal of the Taiwan Institute of Chemical Engineers, 74, pp. 187–195. 4. Abd Rahman, M. N., 2009. Modelling of Physical Vapour Deposition (Pvd) Process on Cutting Tool Using Response Surface Methodology (RSM). PhD thesis, Coventry University. 5. Abdellahi, M., Bahmanpour, M. and Bahmanpour, M., 2014. The use of artificial bee colony algorithm to speed up the nanopowders synthesis during high energy ball milling’, Powder Technology. Elsevier B.V., 264, pp. 61–70. 6. Abdulkareem, A., Suleiman, B., Abdulazeez, A., Kariim, I., Abubakre, O., & Afolabi, A., 2016. Synthesis and Characterization of Carbon Nanotubes on Fe/Al2O3 Composite Catalyst by Chemical Vapour Deposition Method, in Proceedings of the World Congress on Engineering and Computer Science. San Francisco, USA. 7. Abhijith, Srinivasa, P., Grynal, D. M., & Gautama, H., 2018. Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm, in MATEC Web of Conferences, pp. 1–8. 8. Abualigah, L. M., Sawaie, A. M., Khader, A. T., Rashaideh, H., Al-Betar, M. A., & Shehab, M., 2017. β -Hill Climbing Technique for the Text Document Clustering, in New Trends in Information Technology, p. 60. 9. Abuhimd, H., Zeid, A., Jung, Y., Kamarthi, S., 2012. Process Design for the Flow of Ethanol Chemical Vapor Deposition Grown Vertically Aligned Single Walled Carbon Nanotubes, in IMECE2012, pp. 1–5. 10. Abuhimd, H. M., 2011. Ethanol chemical vapor deposition process design for selective growth of vertically-aligned single-walled carbon nanotubes. PhD thesis, Northeastern University. 11. Aderhold, A., Diwold, K., Scheidler, A., & Middendorf, M., 2010. Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance, in NICSO 2010. Springer, Berlin, Heidelberg, pp. 283–294. 12. Aghdam, F. F., 2016. Nanowire Growth Process Modeling and Reliability Models for Nanodevices. PhD thesis, The University of Arizona. 13. Ago, H., Uehara, N., Yoshihara, N., Tsuji, M., Yumura, M., Tomonaga, N., & Setoguchi, T., 2006. Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts’, Carbon, 44(14), pp. 2912–2918. 14. Ahmad, S. N., Hakeem, S., Alvi, R. A., Farooq, K., Farooq, N., Yasmin, F., & Saeed, S., 2013. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites, Journal of Physics: Conference Series, 439(1), p. 12009. 15. Ahsan Habib, M., Patwari, M. A. U., Khan, K. A., & Amanullah Tomal, A. N. M., 2015. Surface Roughness Optimization in Turning Operation Using Hybrid Algorithm of Artificial Bee Colony with RSM, Advanced Materials Research, 1101, pp. 393–396. 16. Ajorlou, S., Shams, I. and Aryanezhad, M. G., 2011. Optimization of a Multiproduct CONWIP-based Manufacturing System using Artificial Bee Colony, in Proceedings of the International MultiConference of Engineers and Computer Scientists, pp. 16–20. 17. Akay, B. and Karaboga, D., 2012. A modified Artificial Bee Colony algorithm for real-parameter optimization, Information Sciences, 192, pp. 120–142. 18. Akıncıoğlu, G., Mendi, F., Çiçek, A., & Akıncıoğlu, S., 2017. Taguchi optimization of machining parameters in drilling of AISI D2 steel using cryo-treated carbide drills, Sadhana, 42(2), pp. 213–222. 19. Al-Betar, M. A., 2010. Adapting and Hybridising Harmony Search with Metaheuristic Components for University Course Timetabling. PhD thesis, Universiti Sains Malaysia. 20. Al-Betar, M. A., 2017. β-Hill climbing: an exploratory local search, Neural Computing and Applications. Springer London, 28(Suppl 1), pp. 153–168. 21. Al-Betar, M. A., Awadallah, M. A., Bolaji, A. L. A., & Alijla, B. O., 2017. β-Hill Climbing Algorithm for Sudoku Game, in Palestinian International Conference on Information and Communication Technology, pp. 84–88. 22. Al-kheder, M. A., 2007. Carbon Nanotubes Characterization and Quality Analysis using Artificial Intelligence. PhD thesis, Washington State University. 23. Alam, M. S., UI Kabir, M. W. and Islam, M. M., 2010. Self-adaptation of mutation step size in Artificial Bee Colony algorithm for continuous function optimization, in 13th International Conference on Computer and Information Technology (ICCIT). Dhaka, Bangladesh: IEEE, pp. 69–74. 24. Allaedini, G., Aminayi, P. and Tasirin, S. M., 2015. The Effect of Alumina and Magnesia Supported Germanium Nanoparticles on the Growth of Carbon Nanotubes in the Chemical Vapor Deposition Method, Journal of Nanomaterials, p. 6. 25. Allaedini, G., Aminayi, P. and Tasirin, S. M., 2016. Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology, Chemical Engineering Research and Design. Institution of Chemical Engineers, 112, pp. 163–174. 26. Allaedini, G., Tasirin, S. M. and Aminayi, P., 2016. Synthesis of graphene through direct decomposition of CO2with the aid of Ni-Ce-Fe trimetallic catalyst’, Bulletin of Materials Science, 39(1), pp. 235–240. 27. Allaedini, G., Tasirin, S. M. and Aminayi, P., 2016. Yield optimization of nanocarbons prepared via chemical vapor decomposition of carbon dioxide using response surface methodology, Diamond and Related Materials, 66, pp. 28. Al Nuaimi, Z. N. A. M., 2017. Hybrid artificial bee colony algorithm with enhanced initialization for protein tertiary structure prediction. PhD thesis, University Science Malaysia. 29. Alqattan, Z. N. and Abdullah, R., 2015. A hybrid artificial bee colony algorithm for numerical function optimization’, International Journal of Modern Physics C, 26(10), p. 1550109. 30. Alsharif, M. H., Nordin, R. and Ismail, M., 2016. Intelligent cooperation management among solar powered base stations towards a green cellular network in a country with an equatorial climate, Telecommunication Systems. Springer US, 62(1), pp. 179–198. 31. Alsukni, E., Arabeyyat, O. S., Awadallah, M. A., Alsamarraie, L., Abu-Doush, I., & Al-Betar, M. A., 2017. Multiple-reservoir scheduling using β-hill climbing algorithm, Journal of Intelligent Systems. 32. Alyasseri, Z. A. A., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A., 2018. Hybridizing β-hill climbing with wavelet transform for denoising ECG signals, Information Sciences. Elsevier Inc., 429, pp. 229–246. 33. Alyasseri, Z. A. A., Khader, A. T., & Al-Betar, M. A., 2017. Optimal electroencephalogram signals denoising using hybrid β-hill climbing algorithm and wavelet transform, in ICISPC’17. Penang, Malaysia, pp. 106–112. 34. Alzaqebah, M. and Abdullah, S., 2011. Artificial bee colony search algorithm for examination timetabling problems, Int. J. Phys. Sci, 6(17), pp. 4264–4272. 35. Anbusagar, N. R. R., Palanikumar, K. and A. Ponshanmugakumar, 2018. Preparation and properties of nanopolymer advanced composites A review, Polymer-based Nanocomposites for Energy and Environmental Applications, pp. 27–73. 36. Ando, Y., 2010. Carbon Nanotube: The Inside Story, Journal of Nanoscience and Nanotechnology, 10(6), pp. 3726–3738. 37. Angulakshmi, V. S., Tamilarasan, G. and Karthikeyan, S., 2014. Optimization of CVD Synthesis Conditions for the Synthesis of Multiwalled Carbon Nanotubes using Response Surface Methodology’, J. Environ. Nanotechnol., 3(2), pp. 81–91. 38. Ansaldo, A., Jaybhaye, S., Chiarolini, M., Di Zitti, E., & Ricci, D., 2009. Single-walled carbon nanotube networks growth optimization’, Physica Status Solidi (B), 246(11–12), pp. 2473–2476. 39. Anthony C. Jones and Michael L. Hitchman, 2009. Chemical Vapour Deposition Precursors Processes and Applications. Royal Society of Chemistry. 40. Aqel, A., El-Nour, K. M. M. A., Ammar, R. A. A., & Al-Warthan, A., 2012. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, Arabian Journal of Chemistry. King Saud University, 5(1), pp. 1–23. 41. Arena, U., Mastellone, M. L., Camino, G., & Boccaleri, E., 2006. An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins, Polymer Degradation and Stability, 91(4), pp. 763–768. 42. Asadnia, M., Khorasani, A. M. and Warkiani, M. E. 2017. An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes’, Journal of Nanomaterials, 2017, pp. 1–6. 43. Asaju, L. bolaji ,2013. Artificial Bee Colony Techniques for University Timetabling Problems. PhD thesis, Universiti Sains Malaysia. 44. Ashrafi, B. and Hubert, P., 2006. Modeling the elastic properties of carbon nanotube array/polymer composites, Composites Science and Technology, 66(3–4), pp. 387–396. 45. Awadallah, A. E., Abdel-Hamid, S. M., El-Desouki, D. S., Aboul-Enein, A. A., & Aboul-Gheit, A. K., 2012. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts, Egyptian Journal of Petroleum, 21(2), pp. 101–107. 46. Awadallah, A. E., Aboul-Enein, A. A., El-Desouki, D. S., & Aboul-Gheit, A. K., 2014. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts, Applied Surface Science. Elsevier B.V., 296, pp. 100–107. 47. Ayyappan, S. and Sivakumar, K., 2015. Investigation of electrochemical machining characteristics of 20MnCr5 alloy steel using potassium dichromate mixed aqueous NaCl electrolyte and optimization of process parameters, in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, pp. 1984–1996. 48. Ayyappan, S. and Sivakumar, K., 2016. Enhancing the performance of electrochemical machining of 20MnCr5 alloy steel and optimization of process parameters by PSO-DF optimizer, International Journal of Advanced Manufacturing Technology, 82(9–12), pp. 2053–2064. 49. Azilah, N., Kasim, M., Jamal, S. H., Sobri, S., & Janudin, N., 2012. Optimization of Synthesis of Carbon Nanotubes using Chemical Vapor Deposition Method, Advanced Materials Research Vols, 489–489, pp. 1535–1539. 50. Bahamish, H. A. A. and Abdullah, R., 2010. Prediction of C-peptide structure using artificial bee colony algorithm’, in International Symposium in information technology (ITSim), pp. 754–759. 51. Bajad, G. S., Tiwari, S. K. and Vijayakumar, R. P., 2015. Synthesis and characterization of CNTs using polypropylene waste as precursor, Materials Science and Engineering B. Elsevier B.V., 194, pp. 68–77. 52. Bakhsh, A. A., 2013. A Posteriori and Interactive Approach for Decision-Making with n 53. Banharnsakun, A., Achalakul, T. and Sirinaovakul, B., 2011. The best-so-far selection in Artificial Bee Colony algorithm, Applied Soft Computing. Elsevier B.V., 11(2), pp. 2888–2901. 54. Bao, T., Morrison, P. W. and Woyczynski, W. A., 2005. Parametric optimization of microhardness of diamond-like carbon films prepared by plasma enhanced chemical vapor deposition, Thin Solid Films, 485(1–2), pp. 27–41. 55. Baradeswaran, A., Vettivel, S. C., Elaya Perumal, A., Selvakumar, N., & Franklin Issac, R., 2014. Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites, Materials and Design. Elsevier Ltd, 63, pp. 620–632. 56. Baughman, R., Zakhidov, A. and Heer, W. de, 2002. Carbon Nanotubes -- The Route Toward Applications, Science, 297(5582), pp. 787–792. 57. Benlahmidi, S., Aouici, H., Boutaghane, F., Khellaf, A., Fnides, B., & Yallese, M., 2017. Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools’, International Journal of Advanced Manufacturing Technology. The International Journal of Advanced Manufacturing Technology, 89(1–4), pp. 803–820. 58. Bethune, D. S., Klang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R., 1993. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363(6430), pp. 605–607. 59. Bhuvaneswari, R., Xavier, R. J. and Arumugam, M., 2017. Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects, Journal of Parasitic Diseases. Springer India, 41(1), pp. 180–187. 60. Bibi, S., Yasin, T., Nawaz, M., & Price, G. J., 2018. Comparative study of the modification of multi-wall carbon nanotubes by gamma irradiation and sonochemically assisted acid etching’, Materials Chemistry and Physics. Elsevier B.V, 207, pp. 23–29. 61. Blum, C. and Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Computing Surveys, 35(3), pp. 263–308. 62. Bolaji, A. L., Khader, A. T., Al-betar, M. A., & Awadallah, M. A., 2013. Artificial Bee Colony Algorithm, its Variants and Applications: A Survey, Journal of Theoretical and Applied Information Technology, 47(2), pp. 434–459. 63. Bolaji, A. L., 2013. Artificial Bee Colony Techniques for University Timetabling Problems. PhD thesis, University Science Malaysia. 64. Bonabeau, E., Dorigo, M., & Theraulaz, G., 1997. Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects, in Biocomputing and emergent computation: proceedings of BCEC97, World Scientific Press, pp. 36–45. 65. Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999. Swarm Intelligence- From Natural to Artificial Systems. OUP USA. 66. Boswell, B., Islam, M. N., Davies, I. J., & Pramanik, A., 2017. Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions, in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, pp. 913–923. 67. Boussaïd, I., Lepagnot, J. and Siarry, P., 2013. A survey on optimization metaheuristics’, Information Sciences, 237, pp. 82–117. 68. Brajevic, I., 2015. Crossover-based artificial bee colony algorithm for constrained optimization problems, Neural Computing and Applications, 26(7), pp. 1587–1601. 69. Brundtland, G. H., 1985. World commission on environment and development’, Environmental policy and law, 14.1(22), pp. 26–30. 70. Buda, S., Shafie, S., Rashid, S. A., Jaafar, H., & Khalifa, A., 2017. Response surface modeling of photogenerated charge collection of silver-based plasmonic dye-sensitized solar cell using central composite design experiments, Results in Physics,7, pp. 493–497. 71. Bunshaw, R., 1994. Handbook of Deposition Technologies for Films and Coatings. second. Noyes Publications. 72. Buragohain, M. and Mahanta, C., 2008. A novel approach for ANFIS modelling based on full factorial design, Applied Soft Computing, 8(1), pp. 609–625. 73. Cantoro, M., Hofmann, S., Pisana, S., SScardaci, V., Parvez, A., Ducati, C., Robertson, J., 2006. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures, Nano Letters, 6(6), pp. 1107–1112. 74. Cao, Q., Li, N. and Tang, J., 2018. Metal semiconductor field effect transistor with carbon nanotube gate’. U.S. Patent: International Business Machines Corp. 75. Chai, S. P., Lee, K. Y., Ichikawa, S., & Mohamed, A. R., 2011. Synthesis of carbon nanotubes by methane decomposition over Co-Mo/Al2O3: Process study and optimization using response surface methodology, Applied Catalysis A: General. Elsevier B.V., 396(1–2), pp. 52–58. 76. Chakraborti, N., 2004. Genetic algorithms in materials design and processing, International Materials Reviews, 49(3), pp. 246–260. 77. Chang, N. L., Ho-Baillie, A. W. Y., Vak, D., Gao, M., Green, M. A., & Egan, R. J., 2018. Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes, Solar Energy Materials and Solar Cells. Elsevier B.V., 174, pp. 314–324. 78. Chang, Y. and Petvipusit, K. R., 2015. Multi-Objective Optimization Coupled With Dimension-Wise Polynomial-Based Approach in Smart Well Placement Under Model Uncertainty, in The SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. 79. Chatterjee, D., Sutradhar, G. and Oraon, B., 2008. Fuzzy rule-based prediction of hardness for sintered HSS components, Journal of Materials Processing Technology, 200(1), pp. 212–220. 80. Chehrazi, E., Sharif, A., Omidkhah, M., & Karimi, M., 2017. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube–Mixed Matrix Membranes, ACS Applied Materials & Interfaces, 9(42), pp. 37321–37331. 81. Chen, J., Li, Y., Li, Z., & Zhang, X., 2004. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts, Applied Catalysis A: General, 269(1–2), pp. 179–186. 82. Cheng, C., Bukkapatnam, S. T. S., Raff, L., & Komanduri, R., 2016. Fast Monte Carlo Simulation-based Process Design and Planning for Carbon Nanotube Synthesis, Procedia Manufacturing. Elsevier B.V., 5, pp. 1357–1368. 83. Chiandussi, G., Codegone, M., Ferrero, S., & Varesio, F. E., 2012. Comparison of multi-objective optimization methodologies for engineering applications, Computers and Mathematics with Applications. Elsevier Ltd. 84. Chu, W., Ran, M., Zhang, X., Wang, N., Wang, Y., Xie, H., & Zhao, X., 2013. Remarkable carbon dioxide catalytic capture (CDCC) leading to solid-form carbon material via a new CVD integrated process (CVD-IP): An alternative route for CO2 sequestration, Journal of Energy Chemistry., 22(1), pp. 136–144. 85. Chuang, L. Y., Yang, C. H., Li, J. C., & Yang, C. H., 2012. A Hybrid BPSO-CGA Approach for Gene Selection and Classification of Microarray Data, Journal of Computational Biology, 19(1), pp. 68–82. 86. Cui, Y., Geng, Z., Zhu, Q., & Han, Y., 2017. Review: Multi-objective optimization methods and application in energy saving’, Energy. Elsevier Ltd, 125, pp. 681–704. 87. Dai, H., 2002. Carbon nanotubes : opportunities and challenges, Surface Science, 500(1–3), pp. 218–241. 88. Dasgupta, K., 2013. Fluidized Bed Synthesis of Carbon Nanotubes, Barc Newsletter, pp. 170–172. 89. Dasgupta, T., Christopher, M. A., Joseph, V. R., Wang, Z. L., & Wu, J. C. F., 2008. Statistical Modeling and Analysis for Robust Synthesis of Nanostructures’, Journal of the American Statistical Association, 103(482), pp. 594–603. 90. Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. John Wiley & Sons. 91. Deb, S., Basanta Singh, N. and Sarkar, S. K., 2011. Particle swarm approach for parameter optimization of quantum well nano structure, Expert Systems with Applications. Elsevier Ltd, 38(10), pp. 12999–13004. 92. Derringer, G. and Suich, R., 1980. Simultaneous Optimization of Several Response Variables, Journal of Quality Technology, pp. 214–219. 93. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J., 2013. Carbon nanotubes: present and future commercial applications, Science, 339(6119), pp. 535–539. 94. Diane S. Knight and William B. White, 1989. Characterization of diamond films by Raman spectroscopy, Journal of Materials Research, 4(2), pp. 385–393. 95. Ding, H. and Ma, Y., 2018. Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity, Nanoscale Horiz. Royal Society of Chemistry, 3(1), pp. 6–27. 96. Dobrzańska-Danikiewicz, A. D. et al., 2014. Synthesis conditions of carbon nanotubes with the chemical vapor deposition method, physica status solidi (b), 251(12), pp. 2420–2425. 97. Duong-Viet, C., Liu, Y., Ba, H., Truong-Phuoc, L., Baaziz, W., Nguyen-Dinh, L., Pham-Huu, C., 2016. Carbon nanotubes containing oxygenated decorating defects as metal-free catalyst for selective oxidation of H2S, Applied Catalysis B: Environmental, 191, pp. 29–41. 98. Dutta, A., Tudu, B., Bandyopadhyay, R., & Bhattacharyya, N., 2011. Black tea quality evaluation using electronic nose: An Artificial Bee Colony approach, in Recent Advances in Intelligent Computational Systems, pp. 143–146. 99. E.C.J. Harrington, 1965. The desirability function, Industrial Quality Control, 21, pp. 494–498. 100. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Joo, S. W., 2014. Carbon nanotubes: Properties, synthesis, purification, and medical applications, Nanoscale Research Letters, 9(1), pp. 1–13. 101. Ebubekir, K., 2010. The Bees Algorithm Theory , Improvements and Applications, ProQuest LLC. PhD thesis, University of Wales, Cardiff United Kingdom. 102. El-Abd, M., 2010a. A cooperative approach to the artificial bee colony algorithm, in Evolutionary Computation (CEC), 2010 IEEE Congress on. Barcelona, Spain, pp. 1–5. 103. El-Abd, M., 2010b. Black-box optimization benchmarking for noiseless function testbed using artificial bee colony algorithm, in Proceedings of the 12th annual conference comp on Genetic and evolutionary computation - GECCO ’10, pp. 1719–1724. 104. El-Ghazali Talbi, 2009. Metaheuristics: From Design to Implementation. JohnWiley & Sons. 105. Faizabadi, E., 2011. Single Wall Carbon Nanotubes in the Presence of Vacancies and Related Energygaps, in (Ed.), P. J. M. M. (ed.) Electronic Properties of Carbon Nanotubes. INTECH Open Access Publisher. 106. Feo, T. A. and Resende, M. G. C., 1995. Greedy Randomized Adaptive Search Procedures, Journal of Global Optimization, 6(2), pp. 109–133. doi: 10.1007/BF01096763. 107. Fister, I. J., Fister, I., Yang, X.-S., Fong, S., & Zhuang, Y., 2014. Bat algorithm : Recent advances’, International Symposium on Computational Intelligence and Informatic, 15(1), pp. 163–167. 108. Fnides, M., Yallese, M. A., Khattabi, R., Mabrouki, T., & Girardin, F., 2017. Modeling and optimization of surface roughness and productivity thru RSM in face milling of AISI 1040 steel using coated carbide inserts, International Journal of Industrial Engineering Computations, 8(4), pp. 493–512. 109. Gao, W.-F., Liu, S. Y. and Huang, L. L., 2013. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning, IEEE Transactions on Cybernetics, 43(3), pp. 1011–1024. 110. Gao, W. F., Liu, S. Y. and Huang, L. L., 2013. A novel artificial bee colony algorithm with Powell’s method, Applied Soft Computing Journal. Elsevier B.V., 13(9), pp. 3763–3775. 111. Garg, M. P., Jain, A. and Bhushan, G., 2014. Multi-objective Optimization of Process Parameters in Wire Electric Discharge Machining of Ti-6-2-4-2 Alloy, Arabian Journal for Science and Engineering, 39(2), pp. 1465–1476. 112. Ghasemi, A. R. and Hajmohammad, M. H., 2015. Minimum-weight design of stiffened shell under hydrostatic pressure by genetic algorithm, Steel and Composite Structures, 19(1), pp. 75–92. 113. Ghorbanzadeh Ahangari, M., 2015. Effect of defect and temperature on the mechanical and electronic properties of graphdiyne: A theoretical study, Physica E: Low-Dimensional Systems and Nanostructures. Elsevier, 66, pp. 140–147. 114. Glover, F., 1989. Tabu Search - Part I, ORSA journal on Computing, 1(3), pp. 190–206. 115. González-Álvarez, D. L., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M., 2011. Finding motifs in DNA sequences applying a Multiobjective Artificial Bee Colony (MOABC) algorithm, in Pizzuti C., Ritchie M.D., G. M. (ed.) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2011. Lecture Notes in Computer Science. Springer, Berlin, pp. 89–100. 116. Goornavar, V., Biradar, S., Periyakaruppan, A., Koehne, J., & Ramesh, G. T., 2016. Optimization of Parameters to Achieve High Yield and Purity Single-Walled Carbon Nanotube by Thermal and Chemical Oxidation and Its Effect on Conductivity, Journal of Nanoscience and Nanotechnology, 16(1), pp. 1076–1084. 117. Gopalakannan, S., Senthilvelan, T. and Ranganathan, S., 2012a. Modeling and optimization of EDM process parameters on machining of Al7075-B4C MMC using RSM, Procedia Engineering, 38, pp. 685–690. 118. Gopalakannan, S., Senthilvelan, T. and Ranganathan, S., 2012b. Modeling and Optimization of EDM Process Parameters on Machining of Al 7075-B4C MMC Using RSM, Procedia Engineering, 38, pp. 685–690. 119. Grujicic, M., Cao, G. and Gersten, B., 2002. Optimization of the chemical vapor deposition process for carbon nanotubes fabrication, Applied Surfae Science, 191(1-4), pp. 223–239. 120. Guesmi, T. and Alshammari, B. M., 2017. An improved artificial bee colony algorithm for robust design of power system stabilizers, Engineering Computations, 34(7), pp. 2131–2153. 121. Guo, Z. and Tan, L., 2009. Fundamentals and Applications of Nanomaterials. Artech House, 2009, doi: 10.1017/CBO9781107415324.004. 122. Gupta, T., 2018. Carbon Nanotube (CNT), in Carbon. Springer, Cham, pp. 229–257. 123. Haghi, A. K. and Thomas, S., 2015. Carbon Nanotubes Theoretical Concepts and Research Strategies for Engineers. 1st edn, 2015. 1st edn. Apple Academic Press. 124. Hamaamin, Y. A., Nejadhashemi, A. P., Zhang, Z., Giri, S., & Woznicki, S. A., 2016. Bayesian regression and neuro-fuzzy methods reliability assessment for estimating streamflow, Water (Switzerland), 8(7), p. 287. 125. Hammad, N. H. Al, 2013. Design and optimization of carbon nanotubes production in chemical vapor deposition reactor. Master thesis, King Fahd University of Petroleum & Minerals. 126. Hanaei, H., Ahmadun, F. R. B., Mohammadpour, E., & Kakooei, S., 2013. Optimization of Carbon Nano Tubes Synthesis using Fluidized bed Chemical Vapor Deposition: A Statistical Approach, Caspian Journal of Applied Sciences Research, 2(2), pp. 46–55. 127. Hansen, P. and Mladenović, N., 1999. An Introduction to Variable Neighborhood Search, Voß S., Martello S., Osman I.H., Roucairol C. (eds) Meta-Heuristics. Springer, Boston, MA, pp. 433–458. 128. Hasançebi, O. and Carbas, S., 2014. Bat inspired algorithm for discrete size optimization of steel frames, Advances in Engineering Software, 67, pp. 173–185. 129. Hazra, M., Croiset, E. and Elkamel, A., 2005. International Hydrogen energy Technologies Congress Invitation, in. Istanbul, Turkey, p. 13. 130. Hemamalini, S. and Simon, S. P., 2008. Economic Load Dispatch with Value-Point Effect Using Artificial BEE Colony Algorithm, in National Systems Conference (NSC 2008), pp. 525–530. 131. Hemmat Esfe, M., Hajmohammad, H., Moradi, R., & Abbasian Arani, A. A., 2017. Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method, Applied Thermal Engineering. Elsevier Ltd, 112, pp. 1648–1657. 132. Herrera-Basurto, R., López-Lorente, Á. I. and Valcárcel, M., 2015. Scanning electron microscopy of carbon nanotubes dispersed in ionic liquid: Solvent influence study, Microchemical Journal. Elsevier B.V., 122, pp. 137–143. 133. Hoffmann, F., Köppen, M., Klawonn, F., & Roy, R., 2005. Soft computing : methodologies and applications. Springer, Berlin, Heidelberg. 134. Holland, J. H., 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Systems. Oxford, England: U Michigan Press. 135. Hoos, H. H. and Stützle, T., 2005. Stochastic Local Search Foundations and Applications. Elsevier/Morgan Kaufmann, San Francisco, CA, USA. 136. Horváth, R. and Drégelyi-kiss, Á., 2015. Analysis of surface roughness of aluminum alloys fine turned: United phenomenological models and multi-performance optimization, Measurement, 65, pp. 181–192. 137. Horváth, Z. E., Biró, L. P., Van Tendeloo, G., Tondeur, C., Bister, G., Pierard, N., Nagy, J. B., 2003. Optimization of the Amount of Catalyst and Reaction Time in Single Wall Nanotube Production, Solid State Phenomena, 94, pp. 271–274. 138. Hou, P. X., Liu, C. and Cheng, H. M., 2008. Purification of carbon nanotubes, Carbon, 46(15), pp. 2003–2025. 139. Hou, T. H., Su, C. H. and Liu, W. L., 2007. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technology, 173(3), pp. 153–162. 140. Hsieh, Y. Z., Su, M. C., Wang, C. H., & Wang, P. C., 2014. Prediction of survival of ICU patients using computational intelligence, Computers in Biology and Medicine. Elsevier, 47(1), pp. 13–19. 141. Hussein, M. Z., Zakarya, S. A., Sarijo, S. H., & Zainal, Z., 2012. Parameter optimisation of carbon nanotubes synthesis via hexane decomposition over minerals generated from Anadara granosa shells as the catalyst support, Journal of Nanomaterials, 2012, p. 90. 142. Iijima, S., 1991. Helical microtubules of graphitic carbon’, Nature, 354(6348), pp. 56–58. 143. Iijima, S. and Ichihashi, T., 1993. Single-shell carbon nanotubes of 1-nm diameter, Nature, 363(6430), pp. 603–605. 144. Irani, R. and Nasimi, R., 2011. Application of artificial bee colony-based neural network in bottom hole pressure prediction in underbalanced drilling, Journal of Petroleum Science and Engineering. Elsevier B.V., 78(1), pp. 6–12. 145. Ismail, N., Joshi, R., Engstler, J., & Schneider, J. J., 2017. Improved hydrogen storage capacity of CNTs synthesized in presence of iron catalyst using arc discharge method in air atmosphere, Bulgarian Chemical Communications, 49(1), pp. 62–67. 146. J. Hromkovic, 2005. Design and Analysis of Randomized Algorithms, Introduction to Design Paradigms. 1st edn. Springer-Verlag Berlin Heidelberg. 147. Jabari Seresht, R., Jahanshahi, M., Raoof, J., & Khorram, M., 2009. Optimization of Experimental Conditions for Fabrication of Carbon Nanotubes Based onTaguchi Robust Design Method, International Journal of Nanoscience and Nanotechnology, 5(1), pp. 9–18. 148. Jadon, S. S., Bansal, J. C., Tiwari, R., & Sharma, H., 2015. Accelerating Artificial Bee Colony algorithm with adaptive local search, Memetic Computing. Springer Berlin Heidelberg, 7(3), pp. 215–230. 149. Jarrah, N. A., 2009. Studying the influence of process parameters on the catalytic carbon nanofibers formation using factorial design, Chemical Engineering Journal, 151(1–3), pp. 367–371. 150. Jaya, A. S. M., 2013. Modeling Of Physical Vapor Deposition Coating Process Using Response Surface Methodology And Adaptive Neuro- Fuzzy Inference System. PhD thesis, Universiti Teknologi Malaysia. 151. Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S., 2010. Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels’, CIRP Journal of Manufacturing Science and Technology, 2(3), pp. 144–152. 152. Ji, S., Lee, M. and Kim, D., 2018. Detection of early stage prostate cancer by using a simple carbon nanotube@paper biosensor, Biosensors and Bioelectronics. Elsevier B.V., 102, pp. 345–350. 153. Jiao, J., Yao, S. and Xia, C., 2010. Application for Artificial Bee Colony Algorithm in Migration of Mobile Agent, in Huang DS., McGinnity M., Heutte L., Z. X. (ed.) Advanced Intelligent Computing Theories and Applications. Communications in Computer and Information Science. Changsha, China: Springer, Berlin, Heidelberg, p. 232. 154. Jones, T., 1995. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico. 155. Jooyoung Lee, Wu, S. and Zhang, Y., 2009. Ab initio protein structure prediction, in Rigden D.J. (ed.) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht, pp. 3–25. 156. Joubert, J. W. and Meintjes, S., 2015. Computational considerations in building inter-firm networks, Transportation, 42(5), pp. 857–878. doi: 10.1007/s11116-015-9650-x. 157. Jung, M. W., Jeon, S. Y., Hong, S. C., Han, J. H., Do, J. S. O., Lee, J. S., & Hoe, S., 2017. Blending improvement carbon-composite having carbon-nanotube and its continuous manufacturing method and apparatus. 158. Jungen, A., Stampfer, C., Tonteling, M., Schiesser, S., Sarangi, D., & Hierold, C., 2005. Localized and CMOS compatibe growth of carbon nanotubes on a 3x3 μm^2 microheater spot, in TRANSDUCERS’05. The 13th International Conference, IEEE, pp. 93–96. 159. Kabalci, Y., Kockanat, S. and Kabalci, E., 2018. A modified ABC algorithm approach for power system harmonic estimation problems, Electric Power Systems Research. Elsevier B.V., 154, pp. 160–173. 160. Kalavathy M., H., Regupathi, I., Pillai, M. G., & Miranda, L. R., 2009. Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM), Colloids and Surfaces B: Biointerfaces, 70(1), pp. 35–45. 161. Kamara, J., 2015. Essays on Willingness and Ability to Pay for Health Insurance Among Informal Sector Workers in Sierra Leone. PhD thesis, City University London. 162. Kang, F., Li, J. and Xu, Q., 2009. Structural inverse analysis by hybrid simplex artificial bee colony algorithms, Computers and Structures, 87(13–14), pp. 861–870. 163. Karaboga, D., 2005. An idea based on Honey Bee Swarm for Numerical Optimization, Technical Report TR06, Erciyes University, (TR06), p. 10. 164. Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N., 2014. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications, Artif Intell Rev, 42(1), pp. 21–57. 165. Karaboga, D. and Akay, B., 2009a. A comparative study of Artificial Bee Colony algorithm, Applied Mathematics and Computation. Elsevier Inc., 214(1), pp. 108–132. 166. Karaboga, D. and Akay, B., 2009b. A survey: Algorithms simulating bee swarm intelligence, Artificial Intelligence Review, 31(1–4), pp. 61–85. 167. Karaboga, D. and Basturk, B., 2007. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, in (Eds.):, P. M. et al. (ed.) IFSA 2007, LNAI 4529. Springer, Berlin, Heidelberg, pp. 789–798. 168. Karaboga, D. and Basturk, B., 2008. On the performance of artificial bee colony (ABC) algorithm, Applied Soft Computing, 8, pp. 687–697. 169. Karaboga, D. and Gorkemli, B., 2012. A Quick Artificial Bee Colony -qABC- Algorithm for Optimization Problems, in Innovations in Intelligent Systems and Applications (INISTA), 2012 International Symposium, pp. 1–5. 170. Karaboǧa, D. and Gorkemli, B., 2011. A combinatorial Artificial Bee Colony algorithm for traveling salesman problem, in 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 50–53. doi: 10.1109/INISTA.2011.5946125. 171. Karhan, Ö., Ceran, Ö. B., Şara, O. N., & Şimşek, B., 2017. Response Surface Methodology Based Desirability Function Approach To Investigate Optimal Mixture Ratio of Silver Nanoparticles Synthesis Process, Industrial & Engineering Chemistry Research, 56(28), pp. 8180–8189. 172. Karimi, M., Amir Ghasemi, S. M., Basri, S. M. M., & Hamblin, M. R., 2017. Carbon Nanotubes in Drug and Gene Delivery’, in. Morgan & Claypool Publishers, pp. 1–4. doi: 10.1088/978-1-6817-4261-8ch1. 173. Karnik, S. R., Gaitonde, V. N. and Davim, J. P., 2008. A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling, International Journal of Advanced Manufacturing Technology, 38(9–10), pp. 868–883. 174. Kashan, M. H., Nahavandi, N. and Kashan, A. H., 2012. DisABC: A new artificial bee colony algorithm for binary optimization, Applied Soft Computing. Elsevier B.V., 12(1), pp. 342–352. doi: 10.1016/j.asoc.2011.08.038. 175. Kennedy, J. and Eberhart, R., 1995. Particle Swarm Optimization, in Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. 176. Keshavarz Moraveji, M. and Naderi, M., 2016. Drilling rate of penetration prediction and optimization using response surface methodology and bat algorithm, Journal of Natural Gas Science and Engineering. Elsevier Ltd, 31, pp. 829–841. 177. Khairusshima, M. K. N., Aqella, A. K. N. and Sharifah, I. S. S., 2017. Optimization of Milling Carbon Fibre Reinforced Plastic Using RSM, Procedia Engineering. Elsevier B.V., 184, pp. 518–528. doi: 10.1016/j.proeng.2017.04.122. 178. Khan, Y., Shukrullah, S., Naz, M. Y., Ghaffar, A., Ahmad, I., & Alsuhaibani, S., 2017. Ferrocene Weight Optimization for CVD Growth of Carbon Nanotubes Over Si/SiO2/Al2O3, Digest Journal of Nanomaterials and Biostructures, 12(4), pp. 957–963. 179. Khanlou, H. M., Sadollah, A., Ang, B. C., Kim, J. H., Talebian, S., & Ghadimi, A., 2014. Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks, Neural Computing and Applications, 25(3–4), pp. 767–777. 180. Khanna, N. and Davim, J. P., 2015. Design-of-experiments application in machining titanium alloys for aerospace structural components, Measurement: Journal of the International Measurement Confederation. Elsevier Ltd, 61, pp. 280–290. 181. Khatti, T., Naderi-Manesh, H. and Kalantar, S. M., 2017. Application of ANN and RSM techniques for modeling electrospinning process of polycaprolactone, Neural Computing and Applications. Neural Computing and Applications, pp. 1–10. 182. Khor, C. P., Jaafar, M. bt and Ramakrishnan, S., 2016. Optimization of Conductive Thin Film Epoxy Composites Properties Using Desirability Optimization Methodology, Journal of Optimization, 2016, pp. 1–8. doi: 10.1155/2016/1652928. 183. Kim, S., Lim, M., Kim, Y., Kim, H. D., & Choi, S. J., 2018. Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network, Scientific Reports. Springer, 8(2638), pp.1–7. 184. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., 1983. Optimization by Simulated Annealing, Science, 220(4598), pp. 671–680. doi: 10.1126/science.220.4598.671. 185. Kivak, T., 2014. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement: Journal of the International Measurement Confederation, 50(1), pp. 19–28. 186. Klinke, C., Bonard, J. M. and Kern, K., 2005. Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes, Physical Review B - Condensed Matter and Materials Physics, 71(3), pp. 1–7. doi: 10.1103/PhysRevB.71.035403. 187. Koopmans, T. C., 1951. Analysis of production as an efficient of activities, in Koopmans, T. C. (ed.) Activity Analysis of Production and Allocation. Cowles Commision Monograph. JohnWiley and Sons, New York, pp. 33–97. 188. Koyee, R. D., Heisel, U., Schmauder, S., & Eisseler, R., 2014. Experimental Investigation and Multiobjective Optimization of Turning Duplex Stainless Steels, International Journal of Manufacturing Engineering, 2014, pp. 1–13. doi: 10.1155/2014/921081. 189. Koziol, K., Bojan Obrad Boskovic and Yahya, N., 2010. Synthesis of Carbon Nanostructures by CVD Method’, Carbon and Oxide Nanostructures. Springer, Berlin, pp. 23–49. 190. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E., 1985. C60 - Buckminsterfullerene’, Nature. Nature, 318(6042), pp. 162–163. doi: 10.1038/318162a0. 191. Kudarenko, I. P., Malykhin, S. A., Orekhov, A. S., Puzyr, A. P., Kleshch, V. I., Ismagilov, R. R., & Obraztsov, A. N., 2018. Detonation Nanodiamond-Assisted Carbon Nanotube Growth by Hot Filament Chemical Vapor Deposition, Physica Status Solidi (B), 255(1), pp. 1–4. 192. Kukovecz, Á., Méhn, D., Nemes-Nagy, E., Szabó, R., & Kiricsi, I., 2005. Optimization of CCVD synthesis conditions for single-wall carbon nanotubes by statistical design of experiments (DoE), Carbon, 43(14), pp. 2842–2849. doi: 10.1016/j.carbon.2005.06.001. 193. Kumar, G., Kumar, R. and Kumar, A., 2016. ZnO Thin Films: Chemical Vapour Deposition, Growth and Functional Properties, Reviews in Advanced Sciences and Engineering, pp. 150–160. doi: 10.1166/rase.2016.1115. 194. Kumar, M. and Ando, Y., 2010. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, Journal of nanoscience and nanotechnology, 10(6), pp. 3739–3758. doi: 10.1166/jnn.2010.2939. 195. Kumar, R. R., Hafeez, M. M. A., Velmanirajan, K., & Kumar, K. N., 2014. Investigation of Machining Parameters in CNC Turning of EN3 Low Carbon Steel Using Genetic Algorithm and Response Surface Methodology, Applied Mechanics and Materials, 592–594, pp. 883–887. 196. Kumar, S., Rani, R., Dilbaghi, N., Tankeshwar, K., & Kim, K. H., 2017. Carbon nanotubes: a novel material for multifaceted applications in human healthcare, Chem. Soc. Rev. Royal Society of Chemistry, 46(1), pp. 158–196. 197. Kumar, S., Sharma, V. K. and Kumari, R., 2013. A Novel Hybrid Crossover based Artificial Bee Colony Algorithm for Optimization Problem, International Journal of Computer Applications, 82(8), pp. 18–25. doi: 10.5120/14136-2266. 198. Kuppan, P., Narayanan, S., Oyyaravelu, R., & Balan, A. S. S., 2017. Performance Evaluation of Electrode Materials in Electric Discharge Deep Hole Drilling of Inconel 718 Superalloy, Procedia Engineering. The Author(s), 174, pp. 53–59. doi: 10.1016/j.proeng.2017.01.141. 199. Lee, K. Y., Yeoh, W. M., Chai, S. P., Ichikawa, S., & Mohamed, A. R., 2012. Utilization of compressed natural gas for the production of carbon nanotubes, Journal of Natural Gas Chemistry. CAS/DICP, 21(6), pp. 620–624. 200. Lee, K.-Y., Yeoh, W.-M., Chai, S.-P., Ichikawa, S., & Mohamed, A. R., 2013. Catalytic Decomposition of Methane to Carbon Nanotubes and Hydrogen: The Effect of Metal Loading on the Activity of CoO-MoO/Al 2 O 3 Catalyst, Fullerenes, Nanotubes and Carbon Nanostructures, 21(2), pp. 158–170. 201. Lee, K. Y., Yeoh, W. M., Chai, S. P., Ichikawa, S., & Mohamed, A. R., 2010. Optimization of carbon nanotubes synthesis via methane decomposition over alumina-based catalyst, Fullerenes Nanotubes and Carbon Nanostructures, 18(3), pp. 273–284. doi: 10.1080/15363831003782999. 202. Lee, X. N., Fathullah, M., Shayfull, Z., Nasir, S. M., Hazwan, M. H. M., & Shazzuan, S., 2017. Deploying response surface methodology (RSM) and glowworm swarm optimization (GSO) in optimizing warpage on a mobile phone cover, in AIP Conference Proceedings. 203. Li, G., Niu, P. and Xiao, X., 2012. Development and investigation of efficient artificial bee colony algorithm for numerical function optimization, Applied Soft Computing Journal. Elsevier B.V., 12(1), pp. 320–332. doi: 10.1016/j.asoc.2011.08.040. 204. Li, H., Liu, K. and Li, X., 2010. A Comparative Study of Artificial Bee Colony, Bees Algorithms and Differential Evolution on Numerical Benchmark Problems, in Cai Z., Tong H., Kang Z., L. Y. (eds) (ed.) Computational Intelligence and Intelligent Systems. ISICA 2010. Communications in Computer and Information Science. Springer, pp. 198–207. 205. Li, J., Lu, G., Li, K., & Wang, W., 2004. Active Nb2O5-supported nickel and nickel-copper catalysts for methane decomposition to hydrogen and filamentous carbon, Journal of Molecular Catalysis A: Chemical, 221(1–2), pp. 105–112. doi: 10.1016/j.molcata.2004.06.015. 206. Li, L., Yevseyeva, I., Basto-fernandes, V., Trautmann, H., Jing, N., & Emmerich, M., 2017. An Ontology of Preference-Based Multi-objective Metaheuristics, arXiv preprint arXiv. 207. Li, W. Z., Wen, J. G. and Ren, Z. F., 2002. Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition, Appl Phys A, 470(2), pp. 397–402. doi: 10.1007/s0033902012. 208. Li, Y., Zhang, X. B., Tao, X. Y., Xu, J. M., Huang, W. Z., Luo, J. H., Geise, H. J., 2005. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst, Carbon, 43(2), pp. 295–301. 209. Lim, S. C., Kim, K. S., Lee, I. B., Jeong, S. Y., Cho, S., Yoo, J.-E., & Lee, Y. H., 2005. Nanomanipulator-assisted fabrication and characterization of carbon nanotubes inside scanning electron microscope, Micron (Oxford, England : 1993), 36(5), pp. 471–476. 210. Lin, H. C. et al Lin, H. C., Su, C. T., Wang, C. C., Chang, B. H., & Juang, R. C., 2012. Parameter optimization of continuous sputtering process based on Taguchi methods, neural networks, desirability function, and genetic algorithms, Expert Systems with Applications. Elsevier Ltd, 39(17), pp. 12918–12925. 211. Lin, H. L., 2015. The Use of the Taguchi Method and a Neural-Genetic Approach to Optimize the Quality of a Pulsed Nd:YAG Laser Welding Process, Experimental Techniques, 39(4), pp. 21–29. doi: 10.1111/j.1747-1567.2012.00849.x. 212. Lin, J., Yang, Y., Zhang, H., & Gong, J., 2017. Effects of CNTs content on the microstructure and mechanical properties of spark plasma sintered TiB2-SiC ceramics, Ceramics International. Elsevier, 43(1), pp. 1284–1289. doi: 10.1016/j.ceramint.2016.10.078. 213. Lin, S. W. and Chen, S. C., 2012. Parameter determination and feature selection for C4.5 algorithm using scatter search approach, Soft Computing, 16(1), pp. 63–75. 214. Liu, W. W., Aziz, A., Chai, S. P., Mohamed, A. R., & Tye, C. T., 2012. Optimisation of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology, The Canadian Journal of Chemical Engineering, 90, pp. 489–505. 215. Lobato, F. S., Sousa, M. N., Silva, M. A., & Machado, A. R., 2014. Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel, Applied Soft Computing Journal. Elsevier B.V., 22, pp. 261–271. doi: 10.1016/j.asoc.2014.05.004. 216. Losic, D. and Santos, A., 2015. Nanoporous alumina : fabrication, structure, properties and applications. Springer Series in Materials Science. 217. Lourenco, H. R., Martin, O. C. and Stutzle, T., 2002. Iterated Local Search, in Glover F, K. G. (ed.) Handbook of metaheuristics. International series in operations research and management science. Kluwer, Dordrecht, pp. 321–353. 218. Lu, J.-C., Jeng, Shuen-Lin, J. and Kaibo, W., 2009. A Review of Statistical Methods for Quality Improvement and Control in Nanotechnology, Journal of Quality Technology, 41(2). 219. Lu, L., Anderson-Cook, C. M. and Robinson, T. J., 2012. A case study to demonstrate a Pareto Frontier for selecting a best response surface design while simultaneously optimizing multiple criteria, Applied Stochastic Models in Business and Industry, 28(3), pp. 206–221. 220. Lubej, M. and Plazl, I., 2012. Theoretical Descriptions of Carbon Nanotubes Synthesis in a Chemical Vapor Deposition Reactor : A Review, Chemical and Biochemical Engineering Quarterly, 26(3), pp. 277–284. 221. Luo, D. and Schricker, S. R., 2014. Handbook of Nanomaterials Properties. 1st edn. Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-31107-9. 222. Luo, R., Pan, T. S., Tsai, P. W., & Pan, J. S., 2010. Parallelized Artificial Bee Colony with ripple-communication strategy, in 4th International Conference on Genetic and Evolutionary Computing, ICGEC. IEEE, pp. 350–353. doi: 10.1109/ICGEC.2010.93. 223. Ma, M., Liang, J., Guo, M., Fan, Y., & Yin, Y., 2011. SAR image segmentation based on artificial bee colony algorithm, Applied Soft Computing. Elsevier B.V., 11, pp. 5205–5214. 224. Mageswari, S., Kalaiselvan, S., Syed Shabudeen, P., Sivakumar, N., & Karthikeyan, S., 2014. Optimization of growth temperature of multi-walled carbon nanotubes fabricated by chemical vapour deposition and their application for arsenic removal, Materials Science-Poland, 32(4), pp. 709–718. doi: 10.2478/s13536-014-0235-8. 225. Magrez, A., Seo, J. W., Smajda, R., Mionić, M., & Forró, L., 2010, Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low temperature growth, Materials, 3(11), pp. 4871–4891. 226. Maleki, M., Latifi, M. and Amani, M., 2010. Optimizing Electrospinning Parameters for Finest diameter of Nano Fibers, International Journal of Materials and Metallurgical Engineering, 4(4), pp. 268–271. 227. Malghan, R. L., Rao, K. M. C., Shettigar, A. K., Rao, S. S., & D’Souza, R. J., 2017. Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation, Journal of the Brazilian Society of Mechanical Sciences and Engineering. Springer Berlin Heidelberg, 39(9), pp. 3541–3553. 228. Markopoulos, A. P., Witold, H., Galanis, N. I., & Karkalos, E. N., 2016. Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing, in Design of Experiments in Production Engineering. Springer International Publishing, pp. 39–88. 229. Martin, P., 2010. Handbook of Deposition Technologies for Films and Coatings Science, Applications and Technology. Third, Journal of Chemical Information and Modeling. 3d Edition. Elsevier Inc. 230. Martin, P., 2011. Introduction to Surface Engineering and Functionality Engineered Materials. Co-published by John Wiley & Sons. 231. Maruyama, T., 2018. Current status of single-walled carbon nanotube synthesis from metal catalysts by chemical vapor deposition, Materials Express, 8(1), pp. 1–20. 232. Mattox, D. M., 2014. Handbook of Physical Vapor Deposition (PVD) Processing. Cambridge University Press. 233. Mehta, P. K., 2015. Role Of Chirality in Modelling and Analysis Of Carbon Nano Tube for Finite Element Analysis, International Journal of Applied Engineering Research (IJAER), 10(48), pp. 32724–32728. 234. Mia, M. and Dhar, N. R., 2017, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method, International Journal of Advanced Manufacturing Technology. The International Journal of Advanced Manufacturing Technology, 88(1–4), pp. 739–753. 235. Mia, M., Khan, M. A. and Dhar, N. R., 2017. Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V’, International Journal of Advanced Manufacturing Technology. The International Journal of Advanced Manufacturing Technology, 90(5–8), pp. 1433–1445. doi: 10.1007/s00170-016-9468-5. 236. Michalewicz, Z. and Fogel, D. B., 2013. How to Solve It: Modern Heuristics. 2nd edn. Springer Science & Business Media. 237. Millonas, M. M., 1994. Swarms, phase transitions, and collective intelligence’, Langton C (ed) Artificial life III. Addison-Wesley, Reading, MA, pp. 417–445. 238. Mishra, A. K. and Hussain, C. M., 2018. Nanotechnology for Sustainable Water Treatment. John Wiley & Sons. 239. Moghaddam, M. A. and Kolahan, F., 2016. Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts’, Journal of Industrial Engineering International. Springer Berlin Heidelberg, 12(2), pp. 199–209. doi: 10.1007/s40092-015-0137-3. 240. Mohamad, A., Zain, A. M., Hj. Ahmad, N. B., Yusof, N. M., & Najarian, F., 2017. Roundness Error Study in Deep Hole Drilling of Cold Mold Steel 718’, Indian Journal of Science and Technology, 10(17), pp. 1–5. 241. Mohammadzadeh, A., Ramezani, M. and Ghaedi, A. M., 2015. Synthesis and characterization of Fe2O3-ZnO-ZnFe2O4/carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method: Optimization by response surface methodology and genetic algorithm, Journal of the Taiwan Institute of Chemical Engineers. Elsevier Ltd., 59, pp. 275–284. doi: 10.1016/j.jtice.2015.07.034. 242. Mohammed, I. A., Bankole, M. T., Abdulkareem, A. S., Ochigbo, S. S., Afolabi, A. S., & Abubakre, O. K., 2017. Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment’, South African Journal of Chemical Engineering. Elsevier Ltd, 24, pp. 17–42. doi: 10.1016/j.sajce.2017.06.001. 243. Mohanty, S., Mishra, A., Nanda, B. K., & Routara, B. C., 2017. Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization, Alexandria Engineering Journal, pp. 1–11. 244. Montgomery, D. C., 2017. Design and Analysis of Experiments, John Wiley & Sons, Inc. Edited by Ninth. John Wiley and Sons. New York. 245. Moore, G. E., 1965. Cramming More Components Onto Integrated Circuits, Electronics, 38, pp. 114–117. 246. Moosa, Ali, A., Ibrahim, M. and Salloom, R. F., 2014. Synthesis and purification of Carbon nanotubes, Int. J.Nano Dimens, 5(2), pp. 97–104. 247. Morjan, R. E., Nerushev, O. A., Sveningsson, M., Rohmund, F., Falk, L. K. L., & Campbell, E. E. B., 2004. Growth of carbon nanotubes from C60, Applied Physics A, 78(3), pp. 253–261. doi: 10.1007/s00339-003-2297-z. 248. Mukherjee, R., Goswami, D. and Chakraborty, S., 2013. Parametric Optimization of Nd:YAG Laser Beam Machining Process Using Artificial Bee Colony Algorithm, Journal of Industrial Engineering, 2013, pp. 1–15. doi: 10.1155/2013/570250. 249. Nanda, B. K., Mishra, A., Dhupal, D., & Swain, S., 2017. Experimentation and optimization of process parameters of abrasive jet drilling by surface response method with desirability based PSO, in Materials Today: Proceedings. Elsevier Ltd, pp. 7426–7437. 250. Narang, J. and Pundir, C. S., 2018. Current and Future Developments in Nanomaterials and Carbon Nanotubes. Edited by J. Narang and C. S. Pundir. Bentham Science Publishers. 251. Navas, H., Picher, M., Arenal, R., Quesnel, E., Anglaret, E., & Jourdain, V., 2013. Controlling the crystalline quality and the purity of single-walled carbon nanotubes grown by catalytic chemical vapor deposition, in Materials Research Society Symposium Proceedings. Cambridge University Press, pp. 1512–1515. 252. Nayak, B. B. and Mahapatra, S. S., 2016. Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material, Engineering Science and Technology, an International Journal. Elsevier B.V., 19(1), pp. 161–170. 253. Nazari, A., Mirjalili, M., Nasirizadeh, N., & Torabian, S., 2015. Optimization of nano TiO2 pretreatment on free acid dyeing of wool using central composite design, Journal of Industrial and Engineering Chemistry, 21, pp. 1068–1076. doi: 10.1016/j.jiec.2014.05.017. 254. Nelder, J. A. and Mead, R., 1965. A simplex method for function minimization, The computer journal, 7(4), pp. 308–313. doi: 10.1093/comjnl/7.4.308. 255. Nguyen, A.-T., Reiter, S. and Rigo, P., 2014. A review on simulation-based optimization methods applied to building performance analysis’, Applied Energy, 113, pp. 1043–1058. 256. Niazi, A., Dai, J. S., Balabani, S., & Seneviratne, L., 2006. Product Cost Estimation: Technique Classification and Methodology Review, Journal of Manufacturing Science and Engineering, Transactions of the ASME, 128(2), pp. 563–575. doi: 10.1115/1.2137750. 257. Nieto, P. J. G., García-Gonzalo, E., Galán, C. O., & Sánchez, A. B., 2016. Hybrid ABC optimized MARS-based modeling of the milling tool wear from milling run experimental data, Materials, 9(2), p. 82. 258. Niu, Z. and Fang, Y., 2008. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst, Materials Research Bulletin, 43(6), pp. 1393–1400. 259. Noaman, M. and Jaradat, A., 2011. Solving shortest common supersequence problem using artificial bee colony algorithm, Int J ACM Jordan, 2(3), pp. 180–185. 260. Nofz, M., 2016. Alumina Thin Films, in Klein L., Aparicio M., J. A. (ed.) Handbook of Sol-Gel Science and Technology. Springer, Cham, pp. 1–44. 261. Noghrehabadi, A., Ghalambaz, M., Ghalambaz, M., & Ghanbarzadeh, A., 2012. A Hybrid Power Series Artificial Bee Colony Algorithm to Obtain a Solution for Buckling of Multiwall Carbon Nanotube Cantilevers Near Small Layers of Graphite Sheets, Applied Computational Intelligence and Soft Computing, 2012, pp. 1–6. doi: 10.1155/2012/683483. 262. Norlina, M. S., Mazidah, P., Sin, N. D. M., & Rusop, M., 2015. Application of metaheuristic algorithms in nano-process parameter optimization, in IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings, pp. 2625–2630. doi: 10.1109/CEC.2015.7257212. 263. Nourbakhsh, A., Ganjipour, B., Zahedifar, M., & Arzi, E., 2007. Morphology Optimization of CCVD- Synthesized Multiwall Carbon Nanotubes , Using statistical Design of experiments, Nanotechnology, 18(11), pp. 115715–115723. 264. O’Connell, M. J., 2006. Carbon Nanotubes Properties and Applications, Taylor & Francis Group. CRC Press. 265. Othman, N. A. F., Azhari, F. N. N., Hatta, S. F. W. M., & Soin, N., 2016. The Application of Taguchi Method on the Robust Optimization of p-FinFET Device Parameters’, in IEEE International Conference on Semiconductor Electronics (ICSE), pp. 141–144. 266. Ozturk, C., Hancer, E. and Karaboga, D., 2015. A novel binary artificial bee colony algorithm based on genetic operators, Information Sciences, 297, pp. 154–170. 267. Ozturk, C., Karaboga, D. and Gorkemli, B., 2011. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm, Sensors, 11(6), pp. 6056–6065. 268. Pan, J. N., Pan, J. and Lee, C. Y., 2009. Finding and optimising the key factors for the multiple-response manufacturing process, International Journal of Production Research, 47(9), pp. 2327–2344. doi: 10.1080/00207540701777423. 269. Pander, A., Hatta, A. and Furuta, H., 2016. Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method, Applied Surface Science. Elsevier B.V., 371, pp. 425–435. doi: 10.1016/j.apsusc.2016.02.216. 270. Parmaksizoǧlu, S. and Alçi, M., 2011. A novel cloning template designing method by using an artificial bee colony algorithm for edge detection of CNN based imaging sensors, Sensors, 11(5), pp. 5337–5359. doi: 10.3390/s110505337. 271. Patel, C. R. P., Tripathi, P., Singh, S., Singh, A. P., Dhawan, S. K., Kotnala, R. K., Srivastava, O. N., 2016. New emerging radially aligned carbon nano tubes comprised carbon hollow cylinder as excellent absorber for electromagnetic environmental pollution’, Journal of Materials Chemistry C, 4(8), pp. 5483–5490. 272. Paul Ducheyne, Healy, K., Hutmacher, D. W., Grainger, D. W., & Kirkpatrick, C. J., 2017. Comprehensive Biomaterials II. second edtion. Elsevier. 273. Paul Weaver, Leo Jansen, Geert van Grootveld, Egbert van Spiegel, and P. V., 2017. Sustainable Technology Development. second edition. Routledge. 274. Pembangun, P., Kencana, D. and Angelina, D., 2017. Synthesis of Carbon Nanotube using Camphor with SS 316 as Catalytic Substrate via Oxidative Heat Treatment Preparation Method, in Proceedings of the 3rd International Symposium on Applied Chemistry. the American Institute of Physics. doi: 10.1063/1.5011856. 275. Pérez-Uribe, A. and Hirsbrunner, B., 2000. Learning and foraging in robot-bees, CEC2000. 276. Perez, J. V. D., Nadres, E. T., Nguyen, H. N., Dalida, M. L. P., & Rodrigues, D. F., 2017. Response surface methodology as a powerful tool to optimize the synthesis of polymer-based graphene oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal contaminants, RSC Adv. Royal Society of Chemistry, 7(30), pp. 18480–18490. 277. Picher, M., Navas, H., Arenal, R., Quesnel, E., Anglaret, E., & Jourdain, V., 2012. Influence of the growth conditions on the defect density of single-walled carbon nanotubes, Carbon, 50(7), pp. 2407–2416. 278. Pierson, H. O., 1999. Handbook Of Chemical Vapor Deposition ( CVD) Principles, Technology, and Applications. Second Edn. William Andrew. 279. Pillai, S. K., Ray, S. S. and Moodley, M., 2008. Purification of Multi-Walled Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, 8(12), pp. 6187–6207. 280. Pirard, S., Douven, S., Bossuot, C., Heyen, G., & Pirard, J.-P., 2007. Carbon nanotubes synthesis by CCVD process: kinetic study on a Fe-Co/Al2O3 catalyst’, Carbon, 45(6), pp. 1167–1175. 281. Porro, S., Musso, S., Giorcelli, M., Chiodoni, A., & Tagliaferro, A., 2007. Optimization of a thermal-CVD system for carbon nanotube growth, Physica E: Low-Dimensional Systems and Nanostructures, 37(1–2), pp. 16–20. 282. Prabhu, S. and Vinayagam, B. K., 2015, Optimization of carbon nanotube based electrical discharge machining parameters using full factorial design and genetic algorithm’, Australian Journal of Mechanical Engineering, 14(3), pp. 161–173. 283. Pramanick, B., Meyn, M. M., Shrivastava, K., Martinez-Chapa, S. O., & Madou, M. J.., 2018. Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires, Nanomaterials and Their Applications. Springer Nature Singapore Pte Ltd. doi: 10.1007/978-981-10-6214-8_4. 284. Prasad, T. and Halder, S., 2015. Optimization of Parameters and its Effect on Size of ZnO Nanoparticles Synthesized by Sol-gel Method, in Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Springer New Delhi. 285. Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., & Kizek, R., 2011. Methods for carbon nanotubes synthesis—review, Journal of Materials Chemistry, 21(40), pp. 15872–15884. doi: 10.1039/c1jm12254a. 286. Priyan, M. S., Santhosh, K., Sivaraman, M. A., Subith, S., & Sunil, M., 2016. Wear Performance of Ti Based Powders Coating on SS 304 by PVD Method, Journal of Materials Science & Surface Engineering, 4(3), pp. 372–375. 287. Qehaja, N., Jakupi, K., Bunjaku, A., Bruçi, M., & Osmani, H., 2015. Effect of machining parameters and machining time on surface roughness in dry turning process, Procedia Engineering. Elsevier B.V., 100, pp. 135–140. 288. Qian, W., Liu, T., Wei, F., Wang, Z., Luo, G., Yu, H., & Li, Z., 2003. The evaluation of the gross defects of carbon nanotubes in a continuous CVD process, Carbon, 41(13), pp. 2613–2617. 289. Rajasekhar, A., Lynn, N., Das, S., & Suganthan, P. N., 2017. Computing with the Collective Intelligence of Honey Bees–A Survey, Swarm and Evolutionary Computation., 32, pp. 25–48. doi: https://doi.org/10.1016/j.swevo.2016.06.001. 290. Rajmohan, T., Sridhar, S., Ganesh, V., & Sathiamitthran, R., 2015. Experimental Investigation and Analysis of Machining Parameters in Drilling of Fly Ash Filled Carbon Fibre Reinforced Composites, Applied Mechanics and Materials, 813–814, pp. 322–331. 291. Rao, K. S., Rao, C. S. P., Bose, P. S. C., Rao, B. B., Ali, A., & Kishore Kumar, K., 2017. Optimization of Machining Parameters for surface roughness on turning of Niobium alloy C-103 by using RSM, Materials Today: Proceedings. Elsevier Ltd, 4(2), pp. 2248–2254. 292. Rao, R. V. and Pawar, P. J., 2009. Modelling and optimization of process parameters of wire electrical discharge machining, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(11), pp. 1431–1440. 293. Rashidi, A. M., Akbarnejad, M. M., Khodadadi, A. A., Mortazavi, Y., & Ahmadpourd, A., 2007. Single-wall carbon nanotubes synthesized using organic additives to Co-Mo catalysts supported on nanoporous MgO, Nanotechnology, 18(31), pp. 1–5. 294. Robertson, J., 2004. Realistic applications of CNTs, Materials Today. Elsevier Ltd, 7(10), pp. 46–52. doi: 10.1016/S1369-7021(04)00448-1. 295. Ruszkiewicz, B. J., Akhavan Niaki, F., Mears, L., & Gendreau, E., 2017. An Investigation of Electroplastic Drilling of Mild Steel’, in Proceedings of the 12th International Conference on Manufacturing Science and Engineering, p. V001T02A013. 296. Sadan, M. K., Ahn, H. J., Chauhan, G. S., & Reddy, N. S., 2016. Quantitative estimation of poly(methyl methacrylate) nano-fiber membrane diameter by artificial neural networks, European Polymer Journal. Elsevier Ltd, 74, pp. 91–100. 297. Saehana, S., Iskandar, F., Abdullah, M., & Khairurrijal., 2013. Optimization of Electrospinning Parameter by Employing Genetic Algorithm in Order to Produce Desired Nanofiber Diameter, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 7(1), pp. 86–91. 298. Sahu, R. P., Abdalla, A. M., Abdel Fattah, A. R., Ghosh, S., & Puri, I. K., 2018. Synthesis, Characterization, and Applications of Carbon Nanotubes Functionalized with Magnetic Nanoparticles, in Balasubramanian, G. (ed.) Advances in Nanomaterials, pp. 37–57. 299. Saiprasert, P., Koolpiruck, D. and Chiangga, S., 2008. Optimization of Chemical Vapor Deposition Synthesis Conditions for Multiwall Carbon Nanotube by Statistical Analysis of Experiment, Advanced Materials Research, 55–57, pp. 533–536. 300. Sakthivel, S. and Pitchumani, B., 2013. Optimization of Operating Variables for Production of Nanoparticles Using Response Surface Modeling, Chemical Engineering Communications, 200(2), pp. 289–304. doi: 10.1080/00986445.2012.707711. 301. Salarizadeh, N., Sadri, M. and Sajedi, R. H., 2018. Synthesis and catalytic