Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite

Polyaniline (PANI) based composites have become of great interest in supercapacitor electrode application due to its high conductivity (13.37 Scm-1) and capacitance (501.31 Fg-1).Some researchers have established excellent capacitance of PANI based electrodes.Yet pseudo-capacitive nature of the PANI...

Full description

Saved in:
Bibliographic Details
Main Author: Mustaffa, Nurul Akmil
Format: Thesis
Language:English
English
Published: 2018
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/23385/1/Synthesis%20And%20Mechanical%20Analysis%20Of%20Electroconductive%20High%20Density%20Polyethylene%20Polyanilinedodecylbenzenesulfonic%20Acid%20Alumina%20Composite.pdf
http://eprints.utem.edu.my/id/eprint/23385/2/Synthesis%20and%20mechanical%20analysis%20of%20electroconductive.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.23385
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Mohd Abid, Mohd Asyadi Azam

topic Q Science (General)
QD Chemistry
spellingShingle Q Science (General)
QD Chemistry
Mustaffa, Nurul Akmil
Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
description Polyaniline (PANI) based composites have become of great interest in supercapacitor electrode application due to its high conductivity (13.37 Scm-1) and capacitance (501.31 Fg-1).Some researchers have established excellent capacitance of PANI based electrodes.Yet pseudo-capacitive nature of the PANI electrodes causes swelling, shrinking and cracking during doping/dedoping of charged ions that have resulted in poor cycle stability thus limits its application.This study aims to enhance the PANI properties to be used as a supercapacitor electrode. PANI doped with dodecylbenzene sulfonic acid (PANI-DBSA) was synthesized through oxidative polymerization by varying concentrations of dopant (DBSA) and concurrently nano alumina (Al2O3) was synthesized and functionalized with silane.Later,high density polyethylene/PANI-DBSA/ Al2O3 (HDPE/PANI-DBSA/Al2O3) composite was fabricated via a statistical approach to optimize the level of DBSA, PANI-DBSA and nano alumina in HDPE in order to incorporate comparable mechanical strength and conductivity.The application of conductive composite of HDPE/PANI-DBSA/Al2O3 towards supercapacitor electrode performance has been verified.As the result,the DBSA doping of PANI produces the protonation of amine nitrogen atoms of PANI.This redox reaction creates charge carrier in form of bipolarons and polaron species in PANI structure thus has enhanced the conductivity of PANI. However,over-doping leads to a decrease of polaron population, due to its conversion to bi-polarons which decrease the conductivity of PANI.Afterwards,through RSM study,the recommended optimum formulation of HDPE/PANIDBSA/Al2O3 composite is made by controlling the concentration of DBSA at 2.00 mmol,composition of PANI-DBSA at 20 wt%,and composition of nano alumina at 5wt %. This recommended formulation yielded a desirability of confident level at 86.65% which is well above the accepted of 80 %.It demonstrates the improved compatibility between PANIDBSA,nano alumina and HDPE through intermolecular forces from the interactions between two organic molecules.The hydrophobic effect of the organic substitution in DBSA and silane could be linked with the free energy transfer of hydrocarbon molecules from an aqueous phase (hydrophilic substitution in PANI molecule and nano alumina surface) to a homogeneous hydrocarbon phase.As a final point,the results demonstrate the fabrication of a promising electrode material derived from HDPE filled PANI-DBSA and nano alumina particles have improved the electrochemical performance of HDPE/PANI/Al2O3║MWCNT asymmetric supercapacitors in Na2SO4,KOH,and H2SO4 aqueous electrolytes.Among the electrolytes,KOH exhibited better specific gravimetric capacitance (145.58 Fg-1) and good capacitance retention (101%) after 10,000 charge-discharge cycles.In brief,HDPE/PANI/Al2O3║MWCNT asymmetric supercapacitor has maximum energy density of 0.55 Whkg-1 with a power density of 0.33 kWkg-1.Thus,the asymmetric supercapacitor is well-suited for power storage since it has a high power density,then it can output large amounts of energy based on its volume.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Mustaffa, Nurul Akmil
author_facet Mustaffa, Nurul Akmil
author_sort Mustaffa, Nurul Akmil
title Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
title_short Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
title_full Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
title_fullStr Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
title_full_unstemmed Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
title_sort synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Manufacturing Engineering
publishDate 2018
url http://eprints.utem.edu.my/id/eprint/23385/1/Synthesis%20And%20Mechanical%20Analysis%20Of%20Electroconductive%20High%20Density%20Polyethylene%20Polyanilinedodecylbenzenesulfonic%20Acid%20Alumina%20Composite.pdf
http://eprints.utem.edu.my/id/eprint/23385/2/Synthesis%20and%20mechanical%20analysis%20of%20electroconductive.pdf
_version_ 1747834046275125248
spelling my-utem-ep.233852022-06-13T12:42:35Z Synthesis and mechanical analysis of electroconductive high density polyethylene polyanilinedodecylbenzenesulfonic acid/alumina composite 2018 Mustaffa, Nurul Akmil Q Science (General) QD Chemistry Polyaniline (PANI) based composites have become of great interest in supercapacitor electrode application due to its high conductivity (13.37 Scm-1) and capacitance (501.31 Fg-1).Some researchers have established excellent capacitance of PANI based electrodes.Yet pseudo-capacitive nature of the PANI electrodes causes swelling, shrinking and cracking during doping/dedoping of charged ions that have resulted in poor cycle stability thus limits its application.This study aims to enhance the PANI properties to be used as a supercapacitor electrode. PANI doped with dodecylbenzene sulfonic acid (PANI-DBSA) was synthesized through oxidative polymerization by varying concentrations of dopant (DBSA) and concurrently nano alumina (Al2O3) was synthesized and functionalized with silane.Later,high density polyethylene/PANI-DBSA/ Al2O3 (HDPE/PANI-DBSA/Al2O3) composite was fabricated via a statistical approach to optimize the level of DBSA, PANI-DBSA and nano alumina in HDPE in order to incorporate comparable mechanical strength and conductivity.The application of conductive composite of HDPE/PANI-DBSA/Al2O3 towards supercapacitor electrode performance has been verified.As the result,the DBSA doping of PANI produces the protonation of amine nitrogen atoms of PANI.This redox reaction creates charge carrier in form of bipolarons and polaron species in PANI structure thus has enhanced the conductivity of PANI. However,over-doping leads to a decrease of polaron population, due to its conversion to bi-polarons which decrease the conductivity of PANI.Afterwards,through RSM study,the recommended optimum formulation of HDPE/PANIDBSA/Al2O3 composite is made by controlling the concentration of DBSA at 2.00 mmol,composition of PANI-DBSA at 20 wt%,and composition of nano alumina at 5wt %. This recommended formulation yielded a desirability of confident level at 86.65% which is well above the accepted of 80 %.It demonstrates the improved compatibility between PANIDBSA,nano alumina and HDPE through intermolecular forces from the interactions between two organic molecules.The hydrophobic effect of the organic substitution in DBSA and silane could be linked with the free energy transfer of hydrocarbon molecules from an aqueous phase (hydrophilic substitution in PANI molecule and nano alumina surface) to a homogeneous hydrocarbon phase.As a final point,the results demonstrate the fabrication of a promising electrode material derived from HDPE filled PANI-DBSA and nano alumina particles have improved the electrochemical performance of HDPE/PANI/Al2O3║MWCNT asymmetric supercapacitors in Na2SO4,KOH,and H2SO4 aqueous electrolytes.Among the electrolytes,KOH exhibited better specific gravimetric capacitance (145.58 Fg-1) and good capacitance retention (101%) after 10,000 charge-discharge cycles.In brief,HDPE/PANI/Al2O3║MWCNT asymmetric supercapacitor has maximum energy density of 0.55 Whkg-1 with a power density of 0.33 kWkg-1.Thus,the asymmetric supercapacitor is well-suited for power storage since it has a high power density,then it can output large amounts of energy based on its volume. 2018 Thesis http://eprints.utem.edu.my/id/eprint/23385/ http://eprints.utem.edu.my/id/eprint/23385/1/Synthesis%20And%20Mechanical%20Analysis%20Of%20Electroconductive%20High%20Density%20Polyethylene%20Polyanilinedodecylbenzenesulfonic%20Acid%20Alumina%20Composite.pdf text en public http://eprints.utem.edu.my/id/eprint/23385/2/Synthesis%20and%20mechanical%20analysis%20of%20electroconductive.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=112874 phd doctoral Universiti Teknikal Malaysia Melaka Faculty Of Manufacturing Engineering Mohd Abid, Mohd Asyadi Azam 1. Abron, K., Wahit, M.U.B. and Bahraeian, S., 2011. A Study on Thermal and Electrical Properties of High Density Polyethylene/High Density Polyethylene Grafted Maleic 2. Anhydride/Montmorillonite/Polypyrrole Blend. Scientific Research and Essays, 6(30), pp.5895–5902. 3. Ahmed, Z., Gilani, S. R., Nazir, A., Naveed, M., Wajid, M. K., Ahmed, M., and Naseer, Y., 2015. Application of PANI/Al2O3 Composite Towards the Removal of Tartrazine Dye from Aqueous Solution. Science International (Lahore), 27(1), pp.319–323. 4. Ahmer, M.F. and Hameed, S., 2014. Studies on the Electrical Conductivity Measurement of Organic/ Organic Composite Polyvinyl Alcohol/ Polyaniline (PVA/PANI). International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(10), pp.12731–12736. 5. Akil, H.M., 2006. Effect of Various Coupling Agents on Properties of Alumina-filled PP Composites. Journal of Reinforced Plastics and Composites, 25(7), pp.745–759. 6. Akmil, N., Luqman, C.A., Ahmad, M. and Zaman, K., 2012. Improved Mechanical Properties of HDPE/ Nano- Alumina Composite through Silane Coupling Agent. AIP Conference Proceeding, 1502(November), pp.500–510. 7. Akmil, N., Luqman, C.A., Ahmad, M. and Zaman, K., 2011. Nano-Alumina and Radiation Effect on the Mechanical Properties of High Density Polyethylene/ Hydroxy Apatite Composite. Key Engineering Materials, 471–472, pp.121–126. 8. Amatucci, G.G., Badway, F., Du Pasquier, A. and Zheng, T., 2001. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. Journal of The Electrochemical Society, 148(8), pp.A930–A939.193 9. Ameen, S. and Akhtar, M., 2011. Fabrication, Doping and Characterization of Polyaniline and Metal Oxides: Dye Sensitized Solar Cells. Solar Cells – Dye-Sensitized Devices, pp.95– 130. 10. Amer, M.S., 2008. Raman Spectroscopy for Soft Matter Applications, New Jersey: John Wiley and Sons Inc. 11. Andreas, H.A., 2015. Self-Discharge in Electrochemical Capacitors: A Perspective Article. Journal of the Electrochemical Society, 162(5), pp.A5047–A5053. 12. Arkles, B., 2015. Hydrophobicity, Hydrophilicity and Silane Surface Modification, United Kingdom: Gelest Ltd. 13. Arslan, A. and Hur, E., 2012. Supercapacitor Applications of Polyaniline and Poly(nmethylaniline) Coated Pencil Graphite Electrode. International Journal of Electrochemical Science, 7(12), pp.12558–12572. 14. Asadirad, M. and Yoozbashizadeh, H., 2012. Synthesis and Characterization of Ce-TZP/ Al2O3 Nanocomposites Prepared via Aqueous Combustion. Journal of Alloys and Compounds, 514(13), pp.150–156. 15. Atkins, P.W. and Shriver, D.F., 2010. Inorganic Chemistry, New York: Oxford University Press. 16. Avila-paredes, H.J., Shvareva, T., Chen, W. and Kim, S., 2009. A Conductivity Study and Calorimetric Analysis of Dried Polysodium 4-Styrenesulfonate/ Polydiallyldimethylammonium Chloride Polyelectrolyte Complexes. The Journal of Chemical Physics, 128(134905), pp.8580–8585. 17. Baćani, M., Babić, D., Novak, M., Kokanović, I. and Fazinić, S., 2009. Equilibrium Doping of Polyaniline by Dodecylbenzenesulfonic Acid. Synthetic Metals, 159(23-24), pp.2584–194 2589. 18. Bai, M.-H., Liu, T.-Y., Luan, F., Li, Y. and Liu, X.-X., 2014. Electrodeposition of Vanadium Oxide-Polyaniline Composite Nanowire Electrodes for High Energy Density Supercapacitors. Journal of Materials Chemistry A, 2(28), pp.10882–10888. 19. Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H. J. and Loye, H.-C. Z., 2009. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage, Materials, 2(4), pp. 1697-1733. 20. Basavaraja, C., Pierson, R., Kim, J. and Huh, D.S., 2008. Microscopic Studies of Polyaniline-poly- N -isopropylacrylamide/ Alumina Composites Containing Dodecylbenzene Sulfonic Acid. Bulletin of the Korean Chemical Society, 29(9), pp.1699– 1704. 21. Bashir, M.J.K., Aziz, H.A., Yusoff, M.S. and Adlan, M.N., 2010. Application of Response Surface Methodology (RSM) for Optimization of Ammoniacal Nitrogen Removal from Semi-Aerobic Landfill Leachate using Ion Exchange Resin. Desalination, 254(1–3), pp.154–161. 22. Belaabed, B., Lamouri, S., Naar, N., Bourson, P. and Hamady, S. O. S., 2010. PolyanilineDoped Benzene Sulfonic Acid/ Epoxy Resin Composites: Structural, Morphological, Thermal and Dielectric Behaviors. Polymer Journal, 42(7), pp.546–554. 23. Ben-Valid, S., Dumortier, H., Dѐcossas, M., Sfez, R., Meneghetti, M., Biancob, A. and Yitzchaik, S., 2010. Polyaniline-Coated Single-Walled Carbon Nanotubes: Synthesis, Characterization and Impact on Primary Immune Cells. Journal of Materials Chemistry, 20(12), pp.2408–2417.195 24. Benabdellah, A., Ilikti, H., Belarbi, H., Fettouhi, B., Amer, A.A. and Hatti, M., 2011. Effects of The Synthesis Temperature on Electrical Properties of Polyaniline and their Electrochemical Characteristics onto Silver Cavity Microelectrode Ag/ C-EM. International Journal of Electrochemical Science, 6, pp.1747–1759. 25. Bhadra, J., Al-Thani, N.J., Madi, N.K. and Al-Maadeed, M.A., 2015. Effects of Aniline Concentrations on the Electrical and Mechanical Properties of Polyaniline Polyvinyl Alcohol Blends. Arabian Journal of Chemistry, 10(5), pp.664–672. 26. Bilal, S., Gul, S. and Shah, A.A., 2015. Calculation of Particle Size Distribution of Polyaniline Salts using ImageJ. Journal of Scientific and Innovative Research, 4(1), pp.17– 21. 27. Bourdo, S.E., Warford, B.A. and Viswanathan, T., 2012. Electrical and Thermal Properties of Graphite/Polyaniline Composites. Journal of Solid State Chemistry, 196, pp.309–313. 28. Carmen, A., Arquímedes, K., Rosestela, P., Gema, G., Nohemy, D., Jeanette, G. and Yanixia, S., 2006. HDPE/HA Composites Obtained in Solution: Effect of the Gamma Radiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 247(2), pp.331–341. 29. Castillo-Castro, T. Del, Castillo-Ortega, M.M., Herrera-Franco, P.J. and Rodriguez-Felix, D.E., 2011. Compatibilization of Polyethylene / Polyaniline Blends with Polyethylene- graft -Maleic Anhydride. Journal of Applied Polymer Science, 119, pp.2895–2901. 30. Chen, F., Gui, D., Ding, S., Zhu, Y. and Liu, J., 2012. Carbon Aerogel/ Polyaniline Composite as Supercapacitors Packaging Applications. International Conference Electronic Package Technology High Density Packaging, 13th, pp.254–257.196 31. Chen, Q., Lic, X., Zanga, X., Caoa, Y., Hea, Y., Li, P., Wang, K., Wei, J., Wu, D. and Zhu, H., 2014. Effect of Different Gel Electrolytes on Graphene-Based Solid-State Supercapacitors. Royal Society of Chemistry Advances, 4(68), pp.36253-36256. 32. Chen, T., Dong, C., Li, X. and Gao, J., 2009. Thermal Degradation Mechanism of Dodecylbenzene Sulfonic Acid-Hydrochloric Acid Co-Doped Polyaniline. Polymer Degradation and Stability, 94(10), pp.1788–1794. 33. Cheng, Q., Tang, J., Shinya, N. and Qin, L.-C., 2013. Polyaniline Modified Graphene and Carbon Nanotube Composite Electrode for Asymmetric Supercapacitors of High Energy Density. Journal of Power Sources, 241, pp.423–428. 34. Chew, T.S., Daik, R. and Hamid, M.A.A., 2015. Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles-Water Based Nanofluid. Polymers, 7(7), pp.1221–1231. 35. Chifor, V., Orban, R.L., Tekiner, Z. and Turker, M., 2011. Thermal, Mechanical and Electrical Properties of High Density Polyethylene Composites Reinforced with Copper Powder. Materials Science Forum, 672, pp.191–194. 36. Chipara, M., Hui, D., Notingher, P. V., Chipara, M. D., Lau, K. T., Sankar, J. and Panaitescu, D., 2003. On Polyethylene – Polyaniline Composites. Composites Part B: Engineering, 34, pp.637–645. 37. Clingerman, M.L., 2001. Development and Modelling of Electrically Conductive Composite Materials. Michigan Technological University. 38. Dai, K., Qu, Y., Li, Y., Zheng, G., Liu, C., Chen, J. and Shen, C., 2014. Electrically Conductive CB/ PA6/ HDPE Composite with a CB Particles Coated Electrospun PA6 Fibrous Network. Materials Letters, 114, pp.96–99.197 39. Dhawan, S.K., Singh, N. and Venkatachalam, S., 2002. Shielding Effectiveness of Conducting Polyaniline Coated Fabrics at 101 GHz. Synthetic Metals, 125, pp.389–393. 40. Feller, J.F., Bruzaud, S. and Grohens, Y., 2004. Influence of Clay Nanofiller on Electrical and Rheological Properties of Conductive Polymer Composite. Materials Letters, 58, pp.739–745. 41. Feng, L., Xie, N. and Zhong, J., 2014. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials, 7(5), pp.3919–3945. 42. Fisher, J., 1980. R.A. fisher and the Design of Experiments, 1922-1926. American Statistician, 34(1), pp.1–7. 43. Gaikwad, A.M. and Arias, A.C., 2017. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries. ACS Applied Materials & Interfaces, 9(7), pp.6390–6400. 44. Galvin, M.E. and Wnek, G.E., 1982. Electrically Conductive Polymer Composites: Polymerization of Acetylene in Polyethylene. Polymer Communications, 23(June), pp.795– 797. 45. Gan, J.K., Lim, Y.S., Huang, N.M. and Lim, H.N., 2015. Hybrid Silver Nanoparticle/Nanocluster-Decorated Polypyrrole for High-Performance Supercapacitors. Royal Society of Chemistry Advances, 5(92), pp.75442–75450. 46. Gao, Y., 2017. Graphene and Polymer Composites for Supercapacitor Applications: A Review. Nanoscale Research Letters, 12(1), p.387. 47. Gáscue, B.R. De, Prin, J.L. and Guerra, D., 2002. Relationship between the Thermal Properties and the Morphology in High Density Polyethylenes. Journal of Thermal Analysis and Calorimetry, 67 (2002), pp.343–347.198 48. Geschke, D., 2007. Physical Properties of Polymers Handbook, New York: Springer. Ghosh, K., Yue, C.Y., Sk, M.M. and Jena, R.K., 2017. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application. ACS Applied Materials and Interfaces, 9(18), pp.15350–15363. 49. Guittet, M.E., 2011. Vertically-Aligned Carbon Nanotubes for Supercapacitor and the Effect of Surface Functionalization to its Performance. Ecole Polytechnique Federale De Lausanne. 50. Han, M.G., Cho, S.K., Oh, S.G. and Im, S.S., 2002. Preparation and Characterization of Polyaniline Nanoparticles Synthesized from DBSA Micellar Solution. Synthetic Metals, 126(1), pp.53–60. 51. Hao, X., Gai, G., Yang, Y., Zhang, Y. and Nan, C.-W., 2008. Development of the Conductive Polymer Matrix Composite with Low Concentration of the Conductive Filler. Materials Chemistry and Physics, 109, pp.15–19. 52. Hashimoto, M., Takadama, H., Mizuno, M. and Kokubo, T., 2006. Enhancement of Mechanical Strength of TiO2/ High-Density Polyethylene Composites for Bone Repair with Silane-Coupling Treatment. Materials Research Bulletin, 41(3), pp.515–524. 53. Hatakeyama, T. and Quinn, F.X., 1999. Thermal Analysis: Fundamentals and Applications to Polymer Science, (2nd Editions), New York: John Wiley & Sons Ltd. 54. Hooshmand, S., Soroudi, A. and Skrifvars, M., 2011. Electro-Conductive Composite Fibers by Melt Spinning of Polypropylene/Polyamide/Carbon Nanotubes. Synthetic Metals, 161(15–16), pp.1731–1737. 55. Huang, J., Mao, C., Zhu, Y., Jiang, W. and Yang, X., 2014. Control of Carbon Nanotubes at199 the Interface of a Co-Continuous Immiscible Polymer Blend to Fabricate Conductive Composites with Ultralow Percolation Thresholds. Carbon, 73, pp.267–274. 56. Hudak, N.S., Schlichting, A.D. and Eisenbeiser, K., 2017. Structural Supercapacitors with Enhanced Performance Using Carbon Nanotubes and Polyaniline. Journal of The Electrochemical Society, 164(4), pp.A691–A700. 57. Jayamurgan, P., Ponnuswamy, V., Ashokan, S. and Mahalingam, T., 2013. The effect of Dopant on Structural , Thermal and Morphological Properties of DBSA-Doped Polypyrrole. Iran Polymer Journal, 22, pp.219–225. 58. Jo, E. H., Jang, H. D., Chang, H., Kim, S. K., Choi, J. –H. and Lee, C. M., 2017. 3 D Network-Structured Crumpled Graphene/Carbon Nanotube/Polyaniline Composites for Supercapacitors. ChemSusChem, 10(10), pp.2210–2217. 59. Jonas, M., Sanches, A.O., Malmonge, L.F. and Malmonge, J.A., 2014. Electrical, Mechanical, and Thermal Analysis of Natural Rubber/Polyaniline-Dbsa Composite. Materials Research, 17(1), pp.59–63. 60. Joseph, J., Rajagopalan, R., Anoop, S. S., Amruthalakshmi, V., Ajay, A., Nair, S. V., Balakrishnan, A., 2014. Shape Tailored Ni3(NO3)2(OH)4 Nano-Flakes Simulating 3-D Bouquet-Like Structures for Supercapacitors: Exploring the Effect of Electrolytes on Stability and Performance. Royal Society of Chemistry Advances, 4(74), pp.39378–39385. 61. Kababya, S., Appel, M., Haba, Y., Titelman, G. I. and Schmidt, A., 1999. PolyanilineDodecylbenzene Sulfonic Acid Polymerized from Aqueous Medium : A Solid State NMR Characterization. Macromolecules, 32, pp.5357–5364. 62. Kampouris, D.K., Ji, X., Randviir, E.P. and Banks, C.E., 2015. A New Approach for the Improved Interpretation of Capacitance Measurements for Materials Utilised in Energy200 Storage. Royal Society of Chemistry Advances, 5(17), pp.12782–12791. 63. Kashani, H., Chen, L., Ito, Y., Han, J., Hirata, A., Chen, M., 2016. Bicontinuous Nanotubular Graphene-Polypyrrole Hybrid for High Performance Flexible Supercapacitors. Nano Energy, 19, pp.391–400. 64. Kattirtzi, J.A., Limmer, D.T. and Willard, A.P., 2017. Microscopic Dynamics of Charge Separation at the Aqueous Electrochemical Interface. Proceedings of the National Academy of Sciences, pp.1–6. 65. Ke, Q. and Wang, J., 2016. Graphene-Based Materials for Supercapacitor Electrodes – A Review. Journal of Materiomics, 2(1), pp.37–54. 66. Khalid, M., Quispe, L. T., Cid, C. C. P., Mello, A., Tumelero, M. A. and Pasa, A. A., 2017. The synthesis of Highly Corrugated Graphene and Its Polyaniline Composite for Supercapacitors. New Journal of Chemistry, 41(11), pp.4629–4636. 67. Khalid, M., Salmiaton, A., Ratnam, C.T. and Luqman, C. A., 2008. Effect of Trimethylolpropane Triacrylate (TMPTA) on the Mechanical Properties of Palm Fiber Empty Fruit Bunch and Cellulose Fiber Biocomposite. , 3(2), pp.153–162. 68. Khalid, S., Cao, C., Wang, L. and Zhu, Y., 2016. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance. Scientific Reports, 6(22699), pp.1–13. 69. Khokhlov, A.R., 1981. Theory of the Polymer Chain Collapse for the d-Dimensional Case. Physica, 105A, pp.357–362. 70. Koening, J.L., 1999. Spectroscopy of Polymers, (2nd Edition), New York: Elsevier. 71. Koul, S., Chandra, R. and Dhawan, S., 2000. Conducting polyaniline composite for ESD and201 EMI at 101GHz. Polymer, 41(26), pp.9305–9310. 72. Krupa, I., Mikova, G. and Prokes, J., 2007. Electrically conductive composites of Polyethylene Filled with Polyamide Particles Coated with Silver. European Polymer Journal, 43, pp.2401–2413. 73. Kumar, R., Rai, P. and Sharma, A., 2016. Facile Synthesis of Cu 2 O Microstructures and Their Morphology Dependent Electrochemical Supercapacitor Properties. Royal Society of Chemistry Advances, 6(5), pp.3815–3822. 74. Kӧleli, F., Düdükcü, M., Arslan, Y., 2000. Synthetic Metal Alloys : Preparation of Polyaniline/ Polypyrrole Alloys in Protic Medium. Turkish Journal of Chemistry, 24, pp.333–341. 75. Lagashetty, A. and Kalyani, S., 2012. Chemical Oxidation Method for Synthesis of Polyaniline – In2O3 Composites. International Journal of Engineering and Science, 1(10), pp.59–64. 76. Leary, J.D., Hamouda, F., Mazé, B. and Pourdeyhimi, B., 2016. Preparation of Pseudocapacitor Electrodes via Electrodeposition of Polyaniline on Nonwoven Carbon Fiber Fabrics. Journal of Applied Polymer Science, 133(16), pp.1–8. 77. Leong, Y. W., Bakar, M. B. A., Ishak, Z. A. M., Ariffin, A., Pukanszky, B., 2004. Comparison of the Mechanical Properties and Interfacial Interactions between talc , Kaolin and Calcium Carbonate Filled Polypropylene Composites. Journal of Applied Polymer Science, 91, pp.3315–3326. 78. Liu, T., Finn, L., Yu, M., Wang, H., Zhai, T., Lu, X., Tong, Y. and Li, Y., 2014. Polyaniline and polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 14(5), pp.2522–2527.202 79. Lorenzo, V., Pereaa, J.M. and Fatou, J.M.G., 1989. Relationships between Mechanical Properties and Microhardness of Polyethylenes. Die Angewandte Makromolekulare Chemie, 172(281), pp.25–35. 80. Lota, K., Sierczynska, A. and Acznik, I., 2013. Effect of Aqueous Electrolytes on Electrochemical Capacitor Capacitance. Chemik, 67(11), pp.1142–1145. 81. Lu, X., Zhang, W., Wang, C., Wen, T.-C. and Wei, Y., 2011. One-Dimensional Conducting Polymer Nanocomposites: Synthesis, Properties and Applications. Progress in Polymer Science, 36(5), pp.671–712. 82. M. Reda, S., 2012. Synthesis and Electrical Properties of Polyaniline Composite with Silver Nanoparticles. Advances in Materials Physics and Chemistry, 2(2), pp.75–81. 83. Maes, G., 2003. Handbook of Raman Spectroscopy. From the Research Laboratory to the Process Line, 84. Maity, P.C. and Khandelwal, M., 2016. Synthesis time and temperature effect on polyaniline morphology and conductivity. American Journal of Materials Synthesis and Processing, 1(4), pp.37–42. 85. Mark, J.E., 2007. Physical Properties of Polymers Handbook, NewYork: CRC Press. 86. McLachlan, D.S., Blaszkiewicz, M. and Newnham, R.E., 1990. Electrical Resistivity of Composites. Journal of the American Ceramic Society, 73(8), pp.2187–2203. 87. Mirjalili, F., Abdullah, L. C., Mohamad, H., Fakhru'l-Razi, A., Dayang R. A. B. and Aghababazadeh, R., 2011. Process for Producing Nano-Alpha-Alumina Powder. ISRN Nanotechnology, 2011, pp.1–5. 88. Moghaddam, A.B. and Nazari, T., 2008. Preparation of Polyaniline / Nanometer-scale203 Alumina Composite by the Potential Cycling Method. International Journal of Electrochemical Science, 3, pp.768–776. 89. Mohamad, N., Yaakub, J., Razak, J. A., Mohd Y. S., Mohammed I. S. and Muchtar, A., 2014. Effects of Epoxidized Natural Rubber (ENR-50) and Processing Parameters on the Properties of NR/EPDM Blends using Response Surface Methodology. Journal of Applied Polymer Science, 131(17), pp.8777–8784. 90. Mohd Zaid, N.A. and Idris, N.H., 2016. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors. Scientific Reports, 6(132082), pp.1– 8. 91. Molapo, K. M., Ndangili, P. M., Ajayi, R. F., Mbambisa, G., Mailu, S. M., Njomo, N., Masikini, M., Baker, P. and Iwuoha, E. I., 2012. Electronics of Conjugated Polymers (I): Polyaniline. International Journal of Electrochemical Science, 7(12), pp.11859–11875. 92. Montgomery, D.C., Runger, G.C. and Hubele, N.F., 2012. Engineering Statistics, New York: John Wiley & Sons, Inc. 93. Motheo, A.D.J. and Bisanha, L.D., 2016. Adhesion of Polyaniline on Metallic Surfaces. In: Aspects on Fundamentals and Applications of Conducting Polymers. Scitus Academics LLC, pp. 19–40. 94. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., Miesbauer, O., Bianchin, A., Hankin, St., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castelló, S. and Schmid, M., 2017. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7(4), p.74.204 95. Mustaffa., N.A., Ahsan, Q., Azam, M.A. and Abdullah, L.C., 2017. Dodecylbenzene Sulfonic Acid Concentration Effect on Electrical and Thermal Properties of Polyaniline. Malaysian Journal of Analytical Sciences, 21(4), pp.950–957. 96. Mustaffa, N.A., 2011. Nano Alumina and Radiation Effect Thermo-Mechanical Properties of High Density Polyethylene-Hydroxyapatite Composite. Universiti Putra Malaysia. 97. Naguib, H.M., Ahmed, M.A. and Abo-Shanab, Z.L., 2017. Silane Coupling Agent for Enhanced Epoxy-Iron Oxide Nanocomposite. Journal of Materials Research and Technology, 247, pp.1–8. 98. Nandapure, B.I., Kondawar, S.B., Salunkhe, M.Y. and Nandapure, A.I., 2013. Magnetic and Transport Properties of Conducting Polyaniline/ Nickel Oxide Nanocomposites. Advance Materials Letters, 4(2), pp.134–140. 99. Narkis, M., Lidor, G., Vaxman, A. and Zuri, L., 1999. New Injection Moldable Electrostatic Dissipative (ESD) Composites based on Very Low Carbon Black Loadings. Journal of Electrostatics, 47(4), pp.201–214. 100. Nelson, J.K., 2010. Dielectric polymer nanocomposites, New York: Springer. Oh, Y. J., Yoo, J. J., Kim, Y. II., Yoon, J. K., Yoon, H. N. and Kim, J. H., 2014. Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-Film Electrode of Supercapacitor. Electrochimica Acta, 116, pp.118–128. 101. Olad, A., Azhar, F.F. and Maryam Shargh, S.J., 2014. Application of Response Surface Methodology for Modeling of Reactive Dye Removal from Solution Using StarchMontmorillonite/ Polyaniline. Polymer Engineering and Science, 54(7), pp.1595–1607. 102. Oliveira, L. B., Graeff, C. Z., Faria, P. V., Backes, E. H., Cristovan, F. H. and Passador, F.205 R., 2016. Preparation and Characterization of Conductive HDPE/LLDPE/Polyaniline Blends. AIP Conference Proceedings, 1779. 103. Oyharçabal, M., Olinga, T., Foulc, M.P. and Vigneras, V., 2012. Polyaniline/Clay as Nanostructured Conductive Filler for Electrically Conductive Epoxy Composites. Influence of Filler Morphology, Chemical Nature of Reagents, and Curing Conditions on Composite Conductivity. Synthetic Metals, 162, pp.555–562. 104. Pan, Q., Tu, W., Ding, L. and Mi, G., 2012. Characteristics of Electric Double Layer in Different Aqueous Electrolyte Solutions for Supercapacitors. Wuhan University Journal of Natural Sciences, 17(3), pp.200–204. 105. Pang, H., Xu, L., Yan, D. and Li, Z., 2014. Progress in Polymer Science Conductive Polymer Composites with Segregated Structures. Progress in Polymer Science, 39(11), pp.1908– 1933. 106. Peng, H., Ma, G. F., Mu, J. J., Sun, K. J. and Lei, Z. Q., 2014. Low-Cost and High Energy Density Asymmetric Supercapacitors Based on Polyaniline Nanotubes And MoO3 Nanobelts. Journal of Materials Chemistry A, 2(27), pp.10384–10388. 107. Phadnis, V.G. and Jagdeo, K.R., 2014. Synthesis of Cd Doped Polyaniline for Supercapacitor. International Refereed Journal of Engineering and Science, 3(7), pp.9–13. 108. Prime, J.D.M. and R.B., 2009. Thermal Analysis of Polymers Fundamentals and Applications, New York: John Wiley & Sons Ltd. 109. Qiang Yuan, Bateman, S.A. and Wu, D., 2010. Mechanical and Conductive Properties of Carbon Black-filled High-density Polyethylene, Low-density Polyethylene, and Linear Low-density Polyethylene. Journal of Thermoplastic Composite Materials, 23(4), pp.459– 471.206 110. Ram, R., Rahaman, M. and Khastgir, D., 2015. Electrical Properties of Polyvinylidene Fluoride (PVDF)/Multi-Walled Carbon Nanotube (MWCNT) Semi-Transparent Composites: Modelling of DC Conductivity. Composites Part A: Applied Science and Manufacturing, 69, pp.30–39. 111. Robinson, D.B., Wu, C.-A.M. and Jacobs, B.W., 2010. Effect of Salt Depletion on Charging Dynamics in Nanoporous Electrodes. Journal of The Electrochemical Society, 157(8), pp.A912–A918. 112. Rybak, A., Boiteux, G., Melis, F. and Seytre, G., 2010. Conductive Polymer Composites based on Metallic Nanofiller as Smart Materials for Current Limiting Devices. Composites Science and Technology, 70(2), pp.410–416. 113. Saini, P., Choudhary, V., Singh, B.P., Mathur, R.B. and Dhawan, S.K., 2009. Polyaniline– MWCNT Nanocomposites for Microwave Absorption and EMI Shielding. Materials Chemistry and Physics, 113(2–3), pp.919–926. 114. Saini, P. and Choudhary, V., 2015. Structural, Spectral and Thermal Properties of Bulky Organic Sulfonic Acids Doped Polyanilines and Antistatic Performance of Its Melt Blend. Indian Journal of Pure and Applied Physics, 53(5), pp.320–327. 115. Search, H., Journals, C., Contact, A. and Iopscience, M., 2002. Collapse Dynamics of a Polymer Chain : Theory and Simulation Collapse Dynamics of a Polymer Chain : Europhysics Letters, 391(3), pp.391–397. 116. Seymour, R.B., 1984. Structure-Property Relationships in Polymers, New York: Plenum Press. 117. Seymour, R.B. and Carraher, C.E., 2015. Structure-Property Relationships in Polymers, New York: Plenum Press.207 118. Shinde, S.S. and Kher, J.A., 2007. A Review on Polyaniline and Its Noble Metal Composites. International Journal of Innovative Research in Science, Engineering and Technology (An ISO Certified Organization), 3297(9), pp.16570–16576. 119. Shnean, Z.Y., 2011. Mechanical and Physical Properties of High Density Polyethylene Filled With Carbon Black and Titanium Dioxide. Diyala Journal of Engineering Sciences, 5(1), pp.147–159. 120. Shreepathi, S., 2006. Dodecylbenzenesulfonic Acid : A Surfactant and Dopant for the Synthesis of Processable Polyaniline and its Copolymers. Technischen Universität Chemnitz. 121. Shrivas, A.G. and Mahajan, A.M., 2008. Effect of Variation in Preparation Temperature on the Conductivity of PANI. Optoelectronics and Advanced Materials, Rapid Communications, 2(12), pp.859–862. 122. Silva, C.H.B., Da Costa Ferreira, A.M., Constantino, V.R.L. and Temperini, M.L.A., 2014. Hybrid Materials of Polyaniline and Acidic Hexaniobate Nanoscrolls: High Polaron Formation and Improved Thermal Properties. Journal of Materials Chemistry A, 2(22), pp.8205–8214. 123. Siong, C.T., Daik, R. and Hamid, M.A.A., 2014. Thermally Conductive of Nanofluid from Surfactant Doped Polyaniline Nanoparticle and Deep Eutectic Ionic Liquid. AIP Conference Proceedings, 381(1614), pp.381–385. 124. Snook, G.A., Kao, P. and Best, A.S., 2011. Conducting-Polymer-Based Supercapacitor Devices and Electrodes. Journal of Power Sources, 196(1), pp.1–12. 125. Srivastava, S.K. and Mittal, V., 2017. Hybrid Nanomaterials, New York: John Wiley & Sons, Inc.208 126. Stejskal, J., Hajná, M., Kašpárková, V., Humpolíček, P., Zhigunov, A., and Trchová, M., 2014. Purification of a Conducting Polymer, Polyaniline, for Biomedical Applications. Synthetic Metals, 195, pp.286–293. 127. Stejskal, J., Riede, A., Hlavatá, D., Proke, J., Helmstedt, M. and Holler, P., 1998. The Effect of Polymerization Temperature on Molecular Weight, Crystallinity, and Electrical Conductivity of Polyaniline. Synthetic Metals, 96, pp.55–61. 128. Stejskal, J. and Gilbert, R.G., 2002. Polyaniline . Preparation of a Conducting Polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), pp.857–867. 129. Stuart, B.H., 1996. Polymer Crystallinity Studied using Raman Spectroscopy. Vibrational Spectroscopy, 10, pp.79–87. 130. Sui, L., Tang, S., Chen, Y., Dai, Z., Huangfu, H., Zhu, Z., Qin, X., Deng, Y. and Haarberg, G. M., 2015. An Asymmetric Supercapacitor with Good Electrochemical Performances based on Ni(OH)2/AC/CNT and AC. Electrochimica Acta, 182, pp.1159–1165. 131. Tanaka, T. and Vaughan, A.S., 2017. Tailoring of Nanocomposite Dielectrics from Fundamentals to Devices and Applications, Singapore: Pan Stanford Publishing Pte. Ltd. 132. Terri, C., 2013. Development of a Conductive Coating with Polyaniline, Los Alamos National Laboratory. USA. 133. Thayumanavan, N., Tambe, P. and Joshi, G., 2015. Effect of Surfactant and Sodium Alginate Modification of Graphene on the Mechanical and Thermal Properties of Polyvinyl Alcohol (Pva) Nanocomposites. Cellulose Chemistry and Technology, 49(1), pp.69–80. 134. Tsotra, P. and Friedrich, K., 2004. Thermal, Mechanical, and Electrical Properties of Epoxy Resin/ Polyaniline-Dodecylbenzenesulfonic Acid Blends. Synthetic Metals, 143(2), pp.237– 242.209 135. Vankayala, R.R., Lai, W.-J.P., Cheng, K.-C. and Hwang, K.C., 2011. Enhanced Electrical Conductivity of Nylon 6 Composite using Polyaniline-Coated Multi-Walled Carbon Nanotubes as Additives. Polymer, 52(15), pp.3337–3343. 136. Vedhi, C. and Fernando, J., 2015. Synthesis , Spectral and Electrochemical Characterization of Adipic Acid Doped Polyaniline. The International Journal of Science & Technoledge, 3(4), pp.166–173. 137. Visakh, P.M. and Nazarenko, O., 2016. Nanostructured Polymer Membranes, Volume 2: Applications, Massachusetts: Scrivener Publishing. 138. Wallace, G.G., Teasdale, P.R., Spinks, G.M. and Kane-Maguire, L.A.P., 2002. Conductive Electroactive Polymers: Intelligent Materials Systems,(2nd Edition), New York: CRC Press. 139. Wang, H., Liu, Y., Li, M., Huang, H., Xu, H. M., Hong, R. J. and Shen, H., 2010. Multifunctional TiO2 Nanowires-Modified Nanoparticles Bilayer Film for 3D DyeSensitized Solar Cells. Optoelectronics and Advanced Materials, Rapid Communications, 4(8), pp.1166–1169. 140. Wang, H., Lin, J. and Shen, Z.X., 2016. Polyaniline (PANi) based Electrode Materials for Energy Storage and Conversion. Journal of Science: Advanced Materials and Devices, 1(3), pp.225–255. 141. Wang, L. and Li, Y., 2013. A Review for Conductive Polymer Piezoresistive Composites and a Development of a Compliant Pressure Transducer. IEEE Transactions on Instrumentation and Measurement, 62(2), pp.495–502. 142. Wang, Q., Qian, X., Wang, S., Zhou, W., Guo, H., Wu, X., Li, J. and Wang, X., 2015. Conductive Polyaniline Composite Films from Aqueous Dispersion: Performance Enhancement by Multi-Walled Carbon Nanotube. Synthetic Metals, 199, pp.1–7.210 143. Wang, Q., Qiu, S., Wang, S., Shang, J., Zhao, R., Wu, X., Chen, W., Zhou, H. and Wang, X., 2015. Graphene Oxide/ Polyaniline Nanotube Composites Synthesized in Alkaline Aqueous Solution. Synthetic Metals, 210, pp.314–322. 144. Wang, Y., Chang, Z., Zhang, Y., Chen, B., Fu, L. and Zhu, Y., 2017. CoCO3 from One-Step Micro- Emulsion Method as Electrode Materials for Faradaic Capacitors. Scientific Reports, 7(2026), pp.1–8. 145. Wang, Y., Song, Y. and Xia, Y., 2016. Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications. Chemical Society Reviews, 45(21), pp.5925–5950. 146. Wu, G., Tan, P., Wang, D., Li, Z., Peng, L., Hu, Y., Wang, C., Zhu, W., Chen, S. and Chen, 147. W., 2017. High-performance Supercapacitors Based on Electrochemical-Induced VerticalAligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Scientific Reports, 7(43676), pp.1–8. 148. Xu, H., Li, X. and Wang, G., 2015. Polyaniline Nanofibers with a High Specific Surface Area and an Improved Pore Structure for Supercapacitors. Journal of Power Sources, 294 (2015), pp.16-21. 149. Yilmaz, F., 2007. Polyaniline: Synthesis, Characterization, Solution Properties and Composites. Middle East Technical University. 150. Yoshino, K., Yin, X. H., Morita, S., Nakanishi, Y., Nakagawa, S., Yamamoto, H., Watanuki, T. and Isa, I., 1993. Preparation and Electrical Property of Polypyrrole-Polyethylene Composite. Japan Journal of Applied Physic, 32, pp.979–981. 151. Yu, A., Chabot, V. and Zhang, J., 2013. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, NewYork: CRC Press, Taylor &211 Francis Group. 152. Yu, Z., Tetard, L., Zhai, L. and Thomas, J., 2015. Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions. Energy & Environmental Science, 8(3), pp.702– 730. 153. Zevin, L.S. and Kimmel, G., 1995. Quantitative X-Ray Diffractometry (1st Edition), New York: Springer-Verlag. 154. Zhang, X., Zhao, Y. and Xu, C., 2014. Surfactant Dependent Self-Organization Of Co3O4 Nanowires on Ni Foam for High Performance Supercapacitors: From Nanowire Microspheres to Nanowire Paddy Fields. Nanoscale, 6(7), pp.3638–46. 155. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L. and Zhang, J., 2015. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chemical Society Reviews, 44(21), pp.7484–7539. 156. Zhong, C. and Hu, W., 2016. Electrolytes for Electrochemical Supercapacitors, New York: CRC Press.