On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material

Awareness of green environment has increased the effort of scientists to seek into alternative methods to provide green energy, in which one of them is by exploiting the free energy from the environment. The way toward procuring the surrounding energy in a system and changing it into a usable electr...

Full description

Saved in:
Bibliographic Details
Main Author: Susilo, Sidik
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/24505/1/On%20Energy%20Harvesting%20Mechanism%20Utilizing%20Flexural%20Vibration%20Of%20A%20Piezoelectric%20Material.pdf
http://eprints.utem.edu.my/id/eprint/24505/2/On%20Energy%20Harvesting%20Mechanism%20Utilizing%20Flexural%20Vibration%20Of%20A%20Piezoelectric%20Material.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.24505
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Susilo, Sidik
On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material
description Awareness of green environment has increased the effort of scientists to seek into alternative methods to provide green energy, in which one of them is by exploiting the free energy from the environment. The way toward procuring the surrounding energy in a system and changing it into a usable electrical electrical energy is is named energy harvesting. One of the most popular methods is the utilization of piezoelectric materials to harvest the ambient vibration. This thesis presents three energy harvester systems: sound energy harvester using polyvinylidene fluoride (PVDF) piezoelectric films, vibration energy harvester using cantilevered lead zirconium titanate (PZT) and vibration energy harvester using single degree of freedom-lead zirconium titanate (SDOF-PZT) system. This study aims to evaluate and to validate experimentally the harvested electrical power for each system. Mathematical models are developed to calculate the energy harvesting performance of the each system. For the sound energy harvester using polyvinylidene fluoride (PVDF) piezoelectric films, single film with load resistance of 400 k at 97 dBA the maximum output power of 48 pW and output voltage of 5.8 mV were obtained. For the vibration energy harvester using cantilevered lead zirconium titanate (PZT) the maximum output voltage 2.04 V and output power 4.1610
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Susilo, Sidik
author_facet Susilo, Sidik
author_sort Susilo, Sidik
title On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material
title_short On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material
title_full On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material
title_fullStr On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material
title_full_unstemmed On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material
title_sort on energy harvesting mechanism utilizing flexural vibration of a piezoelectric material
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Mechaninal Engieering
publishDate 2019
url http://eprints.utem.edu.my/id/eprint/24505/1/On%20Energy%20Harvesting%20Mechanism%20Utilizing%20Flexural%20Vibration%20Of%20A%20Piezoelectric%20Material.pdf
http://eprints.utem.edu.my/id/eprint/24505/2/On%20Energy%20Harvesting%20Mechanism%20Utilizing%20Flexural%20Vibration%20Of%20A%20Piezoelectric%20Material.pdf
_version_ 1747834069975040000
spelling my-utem-ep.245052021-10-05T09:25:00Z On Energy Harvesting Mechanism Utilizing Flexural Vibration Of A Piezoelectric Material 2019 Susilo, Sidik T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Awareness of green environment has increased the effort of scientists to seek into alternative methods to provide green energy, in which one of them is by exploiting the free energy from the environment. The way toward procuring the surrounding energy in a system and changing it into a usable electrical electrical energy is is named energy harvesting. One of the most popular methods is the utilization of piezoelectric materials to harvest the ambient vibration. This thesis presents three energy harvester systems: sound energy harvester using polyvinylidene fluoride (PVDF) piezoelectric films, vibration energy harvester using cantilevered lead zirconium titanate (PZT) and vibration energy harvester using single degree of freedom-lead zirconium titanate (SDOF-PZT) system. This study aims to evaluate and to validate experimentally the harvested electrical power for each system. Mathematical models are developed to calculate the energy harvesting performance of the each system. For the sound energy harvester using polyvinylidene fluoride (PVDF) piezoelectric films, single film with load resistance of 400 k at 97 dBA the maximum output power of 48 pW and output voltage of 5.8 mV were obtained. For the vibration energy harvester using cantilevered lead zirconium titanate (PZT) the maximum output voltage 2.04 V and output power 4.1610 2019 Thesis http://eprints.utem.edu.my/id/eprint/24505/ http://eprints.utem.edu.my/id/eprint/24505/1/On%20Energy%20Harvesting%20Mechanism%20Utilizing%20Flexural%20Vibration%20Of%20A%20Piezoelectric%20Material.pdf text en public http://eprints.utem.edu.my/id/eprint/24505/2/On%20Energy%20Harvesting%20Mechanism%20Utilizing%20Flexural%20Vibration%20Of%20A%20Piezoelectric%20Material.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=116901 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Mechaninal Engieering 1. Ajitsaria, J., Choe, S. Y., Shen, D., and Kim, D. J. (2007). Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation. Smart Materials and Structures, 16(2):447–454. 2. Alippi, C. and Galperti, C. (2008). An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. Circuits and Systems I: Regular Papers, IEEE Transactions on, 55(6):1742–1750. 3. Amirtharajah, R. and Chandrakasan, A. P. (1998). Self-powered Signal Processing using Vibration-based Power Generation. IEEE Journal of Solid-State Circuits, 33(5):687–695. 4. Anton, S. R. and Sodano, H. a. (2007). A Review of Power Harvesting using Piezoelectric Materials (2003-2006). Smart Materials and Structures, 16(3):R1–R21. 5. Ardito, R., Corigliano, A., and Gafforelli, G. (2015). A Highly Efficient Simulation Technique for Piezoelectric Energy Harvesters. Journal of Physics: Conference Series, 660:012141. 6. Beeby, S. P., Torah, R. N., Tudor, M. J., Glynne-Jones, P., O’Donnell, T., Saha, C. R., and Roy, S. (2007). A Micro Electromagnetic Generator for Vibration Energy Harvesting. Journal of Micromechanics and Microengineering, 17(7):1257–1265. 7. Carrera, E., Giunta, G., and Petrolo, M. (2011). Beam Structures. John Wiley & Sons, Ltd, Chichester, UK. 8. Chen, S. N., Wang, G. J., and Chien, M. C. (2006). Analytical Modeling of Piezoelectric Vibration-induced Micro Power Generator. Mechatronics, 16(7):379–387. 9. Ching, N. N. H., Chan, G. M. H., Li, W. J., Wong, H. Y., and Leong, P. H. W. (2000). PCB Integrated Micro Generator for Wireless Systems. International Symposium on Smart Structures and Microsystems, 1(August):19–21. 10. Chu, Y.-s., Kuo, C.-t., and Chiu, Y. (2005). A MEMS Electrostatic Vibration-to-Electricity Energy Converter. The 5th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2(1):49–52. 11. Cook-Chennault, K. A., Thambi, N., and Sastry, A. M. (2008). Powering MEMS Portable Devices a Review of Non-regenerative and Regenerative Power Supply Systems with Special Emphasis on Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 17(4):043001. 12. Dagdeviren, C., Yang, B. D., Su, Y., Tran, P. L., and Joe. (2014). Conformal Piezoelectric Energy Harvesting and Storage from Motions of the Heart, Lung, and Diaphragm. Proceedings of the National Academy of Sciences, 111(5):1927–1932. 13. Dicken, J., Mitcheson, P. D., Stoianov, I., and Yeatman, E. M. (2012). Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications. IEEE Transactions on Power Electronics, 27(11):4514–4529. 14. Diyana, N. H., Muthalif, A. G. A., Fakhzan, M. N., and Nordin, A. N. (2012). Vibration energy harvesting using single and comb-shaped piezoelectric beam structures: Modeling and simulation. In Procedia Engineering, volume 41, pages 1228–1234. 15. Donovan, B. J. (2012). Energy Harvesting for Low a PowerWireless Sensor Nodes. [online] Avalaible at:. http://www.digikey.com/en/articles/techzone/2012/feb/energy-harvesting-forlow- power-wireless-sensor-nodes [Accessed on 21/12/2015 ]. 16. Erturk, A. and Inman, D. J. (2008). A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy. Journal of Vibration and Acoustic, 130(4):041002. 17. Erturk, A. and Inman, D. J. (2009). An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations. Smart Materials and Structures, 18:1–18. 18. Erturk, A. and Inman, D. J. (2011). Piezoelectrc Energy Harvesting. John Wiley & Sons, Inc. 19. Erturk, A., Tarazaga, P. A., Farmer, J. R., and Inman, D. J. (2009). Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams. Journal of Vibration and Acoustics, 131(1):011010. 20. Fahy, F. (2001). Foundations of Engineering Acoustics. Academic Press, 1st edition. 21. Fang, H. B., Liu, J. Q., Xu, Z. Y., Dong, L., Wang, L., Chen, D., Cai, B. C., and Liu, Y. (2006). Fabrication and Performance of MEMS-based Piezoelectric Power Generator for Vibration Energy Harvesting. Microelectronics Journal, 37(11):1280–1284. 22. Galchev, T., Kim, H., and Najafi, K. (2011). Micro Power Generator for Harvesting Low-frequency and Nonperiodic Vibrations. Journal of Microelectromechanical Systems, 20(4):852–866. 23. Gotmare, N. J. and Rotake, D. (2014). Energy optimized design for wireless sensor node using data encoding. International Journal, 2(1). 24. Guigon, R., Chaillout, J.-J., Jager, T., and Despesse, G. (2008). Harvesting Raindrop Energy: Experimental Study. Smart Materials and Structures, 17(1):015039. 25. Harne, R. L. and Wang, K. W. (2013). A review of the recent research on vibration energy harvesting via bistable systems. Smart Materials and Structures, 22(2):023001. 26. Horowitz, S. B., Sheplak, M., Cattafesta, L. N., and Nishida, T. (2006). A MEMS Acoustic Energy Harvester. Journal of Micromechanics and Microengineering, 16(9):S174–S181. IEEE (1988). An American National Standard IEEE Standard on Piezoelectricity. ANSI/ IEEE Std, pages 176–1987. 27. Inman, D. J. (2006). Vibration with Control. John Wiley & Sons. 28. Inman, D. J. (2008). Engineering Vibrations. Pearson Education. 29. Kelly, S. G. (2007). System Dynamic and Response. Chris Carson. 30. Khan, F. U. and Izhar, I. (2013). Acoustic-Based Electrodynamic Energy Harvester forWireless Sensor Nodes Application. International Journal of Materials Science and Engineering, 1(2):72–78. 31. Kim, M., Hoegen, M., Dugundji, J., and Wardle, B. L. (2010). Modeling and Experimental Verification of Proof Mass Effects on Vibration Energy Harvester Performance. Smart Materials and Structures, 19(4):045023. 32. Kok, S. L., White, N. M., and Harris, N. R. (2008). A Free-Standing Thick-Film Piezoelectric Energy Harvester. In IEEE Sensors 2008 Conference, pages 589–592. 33. Kralov, I., Terzieva, S., and Ignatov, I. (2011). Analysis of Methods and MEMS for Acoustic Energy Harvesting with Application in Railway Noise Reduction. In Proceedings of International Conference On Innovations, Recent Trends And Challenges In Mechatronics, 34. Mechanical Engineering And New High-Tech Products Development – MECAHITECH’11, volume 3, pages 56–62. 35. Kulah, H. and Najafi, K. (2008). Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications. IEEE Sensors Journal, 8(March):261–268. 36. Li, B., Laviage, A. J., You, J. H., and Kim, Y. J. (2013). Harvesting Low-frequency Acoustic Energy using Multiple PVDF Beam Arrays in Quarter-wavelength Acoustic Resonator. Applied Acoustics, 74(11):1271–1278. 37. Li, B. and You, J. H. (2012). Simulation of Acoustic Energy Harvesting Using Piezoelectric Plates in a Quarter-wavelength Straight-tube Resonator. In Proceedings of the 2012 COMSOL Conference in Boston. 38. Li, S., Yuan, J., and Lipson, H. (2011). Ambient wind energy harvesting using cross-flow fluttering. Journal of Applied Physics, 109(2):026104–026104. 39. Lien, I. C. and Shu, Y. C. (2012). Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Materials and Structures, 21(8):082001. 40. Liu, F., Phipps, A., Horowitz, S., Ngo, K., Cattafesta, L., Nishida, T., and Sheplak, M. (2008). Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator. The Journal of the Acoustical Society of America, 123(4):1983–1990. 41. Lu, F., Lee, H. P., and Lim, S. P. (2003). Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-electromechanical-systems Applications. Smart Materials and Structures, 13(1):57–63. 42. Lueke, J. and Moussa, W. A. (2011). MEMS-based power generation techniques for implantable biosensing applications. Sensors, 11(2):1433–1460. 43. Mateu, L. and Moll, F. (2005). Review of Energy Harvesting Techniques and Applications for Microelectronics. Proceedings of SPIE 5837: VLSI Circuits and Systems II, pages 359– 373. 44. Meninger, S., Mur-miranda, J. O., Amirtharajah, R., Chandrakasan, A. P., and Lang, J. H. (2001). Vibration-to-Electric Energy Conversion. 9(1):64–76. 45. Mineto, A. T., Pereira, M., and Braun, D. S. (2010). Modeling of a Cantilever Beam for Piezoelectric Energy Harvesting. In 9th Brazilian Conference on Dynamics, Control and their Applications, pages 599–605. 46. Mitcheson, P., Miao, P., Stark, B., Yeatman, E., Holmes, A., and Green, T. (2004). MEMS Electrostatic Micropower Generator for Low Frequency Operation. Sensors and Actuators A: Physical, 115(2-3):523–529. No el Eduard, d. T. (2005). Modeling and Design of a MEMS Piezoelectric Vibration Energy Harvester. Master’s thesis, Massachusetts Institute of Technology. 47. Petyt, M. (2010). Introduction to finite element vibration analysis. Cambridge university press. 48. Phipps, A., Liu, F., Cattafesta, L., Sheplak, M., and Nishida, T. (2009). Demonstration of a Wireless, Self-powered, Electroacoustic Linier System. The Journal of the Acoustical Society of America, 125(2):873–881. 49. Pillai, M. A. and Deenadayalan, E. (2014). A review of acoustic energy harvesting. International Journal of Precision Engineering and Manufacturing, 15(5):949–965. 50. Priya, S. and Inman, D. J. (2009). Energy Harvesting Technologies, volume 21. Springer. 51. Rosenfeld, E. (2014). The future of energy: You may be walking on it. [online] Avalaible at:. https://www.cnbc.com/2014/11/19/energy-source-of-the-future-the-solutionto- our-energy-needs-may-be-all-around-us.html , [Accessed on 21/12/2015 ]. 52. Roundy, S., Otis, B. P., Chee, Y.-h., Rabaey, J. M., and Wright, P. (2003). A 1.9 GHz RF Transmit Beacon using Environmentally Scavenged Energy. Optimization, 4(2):4. 53. Roundy, S. and Wright, P. K. (2004). A Piezoelectric Vibration Based Generator forWireless Electronics. Smart Materials and Structures, 13(5):1131–1142. 54. Roundy, S., Wright, P. K., and Pister, K. S. (2002). Micro-electric Vibration-to-electricity Converters. In ASME 2002 International Mechanical Engineering Congress and Exposition, volume 220, pages 487–496. American Society of Mechanical Engineers. 55. Seah,W. K., Eu, Z. A., and Tan, H.-P. (2009). Wireless sensor networks powered by ambient energy harvesting (wsn-heap)-survey and challenges. In Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology. 56. Shan, X., Deng, J., Song, R., and Xie, T. (2017). A Piezoelectric Energy Harvester with Bending–Torsion Vibration in Low-Speed Water. Applied Sciences, 7(2):116. 57. Sharapov, V. (2011). Piezoceramic Sensors. Springer Science & Business Media, Berlin. 58. Shenck, N. S. and Paradiso, J. A. (2001). Energy Scavenging with Shoe-Mounted Piezoelectrics Piezoelectric Shoe Power. IEEE Micro, 21(3):30–42. 59. Smits, J. G., Dalke, S. I., and Cooney, T. K. (1991). The Constituent Equations of Piezoelectric Bimorphs. Sensors and Actuators A: Physical, 28(1):41–61. 60. Sodano, H. A., Park, G., and Inman, D. J. (2004). Estimation of Electric Charge Output for Piezoelectric Energy Harvesting. Strain, 40(2):49–58. 61. Sterken, T., Fiorini, P., Baert, K., Borghs, G., and Puers, R. (2004). Novel Design and Fabrication of a MEMS Electrostatic Vibration Scavenger. Proceedings Power MEMS, pages 18–21. 62. Susanto, K. (2009). Vibration Analysis of Piezoelectric Laminated Slightly Curved Beams using Distributed Transfer Function Method. International Journal of Solids and Structures, 46(6):1564–1573. 63. Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., and Welsh, T. R. (2001). The Energy Harvesting Eel : A Small Subsurface Ocean/River Power Generator. IEEE Journal of Oceanic Engineering, 26(4):539–547. 64. Techet, A. H., Allen, J. J., and Smits, A. J. (2002). Piezoelectric Eels for Energy Harvesting in the Ocean. In Proceedings of The Twelfth (2002) International and Polar Engineering Conference, volume 3, pages 713–718. 65. Telba, A. and Ali, W. G. (2012). Modeling and Simulation of Piezoelectric Energy Harvesting. In Proceedings of the World Congress on Engineering, volume 2, pages 4–6. 66. Tiersten, H. F. (1969). Linear Piezoelectric Plate Vibrations- Elements of the Linear Theory of Piezoelectricity and the Vibrations of Piezoelectric Plates. Springer. 67. Vullers, R. J. M., van Schaijk, R., Doms, I., Van Hoof, C., and Mertens, R. (2009). Micropower Energy Harvesting. Solid-State Electronics, 53(7):684–693. 68. Wang, H.-y., Shan, X.-b., and Xie, T. (2012). An Energy Harvester Combining a Piezoelectric Cantilever and a Single Degree of Freedom Elastic System. Journal of Zhejiang University SCIENCE A, 13(7):526–537. 69. Wang, W.-C., Wu, L.-Y., Chen, L.-W., and Liu, C.-M. (2010). Acoustic Energy Harvesting by Piezoelectric Curved Beams in The Cavity of a Sonic Crystal. Smart Materials and Structures, 19(4):045016. 70. Williams, C., Shearwood, C., Harradine, M., Mellor, P., Birch, T., and Yates, R. (2001). Development of an Electromagnetic Micro-generator. IEE ASSP Magazine Proceedings - Circuits, Devices and Systems, 148(6):337. 71. Williams, C. and Yates, R. B. (1996). Analysis of a Micro-electric Generator for Microsystems. Sensors and Actuators A: Physical, 52(1-3):8–11. 72. Yang, A., Li, P., Wen, Y., Lu, C., Peng, X., Zhang, J., and He, W. (2013). Enhanced acoustic energy harvesting using coupled resonance structure of sonic crystal and helmholtz resonator. Applied Physics Express, 6(12):127101. 73. Yen, B. C. and Lang, J. H. (2006). A Variable-Capacitance Vibration-to-Electric Energy Harvester. Circuits and Systems I: Regular Papers, IEEE Transactions on, 53(2):288–295. 74. Yildiz, F. (2007). Potential Ambient Energy-Harvesting Sources and Techniques. The Journal of Technology Studies, 35:40–48. 75. Zhang, M., Brignac, D., Ajmera, P., and Lian, K. (2008). A Low-frequency Vibrationto- Electrical Energy Harvester. In Nanosensors and Microsensors for Bio-Systems 2008, volume 6931, pages 69310S–69310S–12. 76. Zhao, J. and You, Z. (2014). Models for 31-mode PVDF energy harvester for wearable applications. Scientific World Journal, 2014. 77. Zhou, Z., Qin, W., and Zhu, P. (2017). Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester. Energy, 126(2017):527–534. 78. Zhu, D. (2011). Vibration Energy Harvesting : Machinery Vibration , Human Movement and Flow Induced Vibration. Dr. Yen Kheng Tan (Ed.), ISBN: 978-953-307-438-2, 79. InTech, Available from: http://www.intechopen.com/books/sustainable-energy- harvestingtechnologies- past-present-and-future/vibration-energy-harvesting-machinery-vibrationhuman- movement-and-flow-induced-vibration. 80. Zhu, D., Beeby, S., Tudor, J., White, N., and Harris, N. (2010). A Novel Miniature Wind Generator forWireless Sensing Applications. In Sensors, 2010 IEEE, volume 1, pages 1415– 1418. 81. Zorlu, O., Topal, E., and Kulah, H. (2009). A Mechanical Frequency up-conversion Mechanism for Vibration Based Energy Harvesters. In Sensors, 2009 IEEE, pages 1366–1369.