Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media

High heat flux removal is one of the major challenges in designing for the future electronic devices. The trend to address these high heat fluxes is to introduce microchannel arrays directly in the heat generating by the electronic component. Commonly, water is suggested to be used as a single-phase...

Full description

Saved in:
Bibliographic Details
Main Author: Zainal Abidin, Syazwani
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/24662/1/Thermophysical%20Properties%20Of%20CNF-Based%20Nanocoolant%20As%20A%20Heat%20Transfer%20Media.pdf
http://eprints.utem.edu.my/id/eprint/24662/2/Thermophysical%20Properties%20Of%20CNF-Based%20Nanocoolant%20As%20A%20Heat%20Transfer%20Media.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.24662
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Zainal Abidin, Syazwani
Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media
description High heat flux removal is one of the major challenges in designing for the future electronic devices. The trend to address these high heat fluxes is to introduce microchannel arrays directly in the heat generating by the electronic component. Commonly, water is suggested to be used as a single-phase coolant in combination with the microchannel heat sinks for cooling of electronics applications. However, one of the major problems faced by the existing coolants is the limited amount of heat that can be absorbed by the fluids. An innovative way to overcome this limitation is by utilizing a nanocoolant as the heat transfer medium in a cooling application. This research was aimed at formulating an efficient nanocoolant from PR-24 HHT carbon nanofibers (CNF) in a base fluid consisting of deionized water (DI) and ethylene glycol (EG). The dispersion of nanofibers was enhanced by the presence of polyvinylpyrrolidone (PVP) as the stabilizing agent through two-step preparation process. The experiment was conducted by setting the variable weight percentage of CNF from 0.1wt% to 1.0wt%, with the base fluid ratio range from 100:0 (DI:EG) to 0:100 (DI:EG). The characterization testing was performed to study the surface species of the nanofiber using nitrogen gas adsorption technique, fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The detailed study of the thermophysical properties such as thermal conductivity, viscosity, and specific heat capacity of stable CNF-based nanocoolant was also been investigated at three different temperatures (6°C, 25°C and 40°C). The maximum thermal conductivity enhancement of 29.95% was noticed for the nanocoolant with 0.6wt% at 0:100 (DI:EG). The rheological analysis showed that when the temperature increases, the viscosity diminishes. Whereas, due to a lower specific heat of the CNF, the specific heat of the nanocoolant decreased in proportion with the CNF concentration. Experimental investigations into the forced convective heat transfer performance of the CNF-based nanocoolant in a laminar flow through a mini heat transfer test rig showed that the presence of nanoparticles enhanced the heat transfer coefficient as opposed to the original base fluid. The highest heat transfer coefficient was reported with 30:70 (DI:EG) by the 0.7wt% nanocoolant at 40°C with the value of 265.28 x 103 W/m2.K. The enhancement of the heat transfer coefficient was due to the higher thermal conductivity value. The Nusselt number was also calculated and presented in this research. Overall, this study shows that the CNF-based nanocoolant has a huge potential to replace existing coolants in electronic cooling applications. Thus, in order to commercialize nanocoolant in practice, more fundamental studies are needed to understand the crucial parameters that affect their thermal characteristics.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Zainal Abidin, Syazwani
author_facet Zainal Abidin, Syazwani
author_sort Zainal Abidin, Syazwani
title Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media
title_short Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media
title_full Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media
title_fullStr Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media
title_full_unstemmed Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media
title_sort thermophysical properties of cnf-based nanocoolant as a heat transfer media
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Mechanical Engineering
publishDate 2019
url http://eprints.utem.edu.my/id/eprint/24662/1/Thermophysical%20Properties%20Of%20CNF-Based%20Nanocoolant%20As%20A%20Heat%20Transfer%20Media.pdf
http://eprints.utem.edu.my/id/eprint/24662/2/Thermophysical%20Properties%20Of%20CNF-Based%20Nanocoolant%20As%20A%20Heat%20Transfer%20Media.pdf
_version_ 1747834082111258624
spelling my-utem-ep.246622021-10-05T12:24:49Z Thermophysical Properties Of CNF-Based Nanocoolant As A Heat Transfer Media 2019 Zainal Abidin, Syazwani TJ Mechanical engineering and machinery High heat flux removal is one of the major challenges in designing for the future electronic devices. The trend to address these high heat fluxes is to introduce microchannel arrays directly in the heat generating by the electronic component. Commonly, water is suggested to be used as a single-phase coolant in combination with the microchannel heat sinks for cooling of electronics applications. However, one of the major problems faced by the existing coolants is the limited amount of heat that can be absorbed by the fluids. An innovative way to overcome this limitation is by utilizing a nanocoolant as the heat transfer medium in a cooling application. This research was aimed at formulating an efficient nanocoolant from PR-24 HHT carbon nanofibers (CNF) in a base fluid consisting of deionized water (DI) and ethylene glycol (EG). The dispersion of nanofibers was enhanced by the presence of polyvinylpyrrolidone (PVP) as the stabilizing agent through two-step preparation process. The experiment was conducted by setting the variable weight percentage of CNF from 0.1wt% to 1.0wt%, with the base fluid ratio range from 100:0 (DI:EG) to 0:100 (DI:EG). The characterization testing was performed to study the surface species of the nanofiber using nitrogen gas adsorption technique, fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The detailed study of the thermophysical properties such as thermal conductivity, viscosity, and specific heat capacity of stable CNF-based nanocoolant was also been investigated at three different temperatures (6°C, 25°C and 40°C). The maximum thermal conductivity enhancement of 29.95% was noticed for the nanocoolant with 0.6wt% at 0:100 (DI:EG). The rheological analysis showed that when the temperature increases, the viscosity diminishes. Whereas, due to a lower specific heat of the CNF, the specific heat of the nanocoolant decreased in proportion with the CNF concentration. Experimental investigations into the forced convective heat transfer performance of the CNF-based nanocoolant in a laminar flow through a mini heat transfer test rig showed that the presence of nanoparticles enhanced the heat transfer coefficient as opposed to the original base fluid. The highest heat transfer coefficient was reported with 30:70 (DI:EG) by the 0.7wt% nanocoolant at 40°C with the value of 265.28 x 103 W/m2.K. The enhancement of the heat transfer coefficient was due to the higher thermal conductivity value. The Nusselt number was also calculated and presented in this research. Overall, this study shows that the CNF-based nanocoolant has a huge potential to replace existing coolants in electronic cooling applications. Thus, in order to commercialize nanocoolant in practice, more fundamental studies are needed to understand the crucial parameters that affect their thermal characteristics. 2019 Thesis http://eprints.utem.edu.my/id/eprint/24662/ http://eprints.utem.edu.my/id/eprint/24662/1/Thermophysical%20Properties%20Of%20CNF-Based%20Nanocoolant%20As%20A%20Heat%20Transfer%20Media.pdf text en public http://eprints.utem.edu.my/id/eprint/24662/2/Thermophysical%20Properties%20Of%20CNF-Based%20Nanocoolant%20As%20A%20Heat%20Transfer%20Media.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=116899 mphil masters Universiti Teknikal Malaysia Melaka Faculty of Mechanical Engineering 1. Abdul Hamid, K., Azmi, W.H., Mamat, R. and Usri, N.A., 2016. Thermal Conductivity Enhancement of TiO2 Nanofluid in Water and Ethylene Glycol (EG) Mixture. Indian Journal of Pure & Applied Physics, 54, pp. 651-655. 2. Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B., Abdullah, N., Hafiz, M.I.M., Masripan, N.A.B. and Abdullah, A., 2016. Investigation of Thermal Characteristics of CNF-based Nanofluids for Electronic Cooling Applications. Journal of Mechanical Engineering and Sciences, 10(3), pp. 2336-2349. 3. Abidin, S.Z., Mohamad, I.S., Hashim, A.Y.B. and Abdullah, N., 2016. Characterization of Nanocarbon Particles Using Nitrogen Adsorption Analysis: Isotherm, Pore Type, Pore Size and BET Surface Area. Proceedings of Mechanical Engineering Research Day, pp. 127-128. 4. Agnihotri, S., Mota, J. P., Rostam-Abadi, M. and Rood, M. J., 2005. Characterization of Single-Walled Carbon Nanotube Bundles by Experiment and Molecular Simulation. Langmuir, 21(3), pp. 896-904. 5. Albadr, J., Tayal, S. and Alasadi, M., 2013. Heat Transfer through Heat Exchanger using Al2O3 Nanofluid at Different Concentrations. Case Studies in Thermal Engineering, 1(1), pp. 38-44. 6. Almqvist, N., Delamo, Y., Smith, B. L., Thomson, N. H., Bartholdson, A., Lal, R., Brzezinski, M. and Hansma, P. K., 2001. Micromechanical and Structural Properties of a Pennate Diatom Investigated by Atomic Force Microscopy. Journal of Microscopy, 202(3), pp. 518-532. 7. Akoh, H., Tsukasaki, Y., Yatsuya, S. and Tasaki, A., 1987. Magnetic Properties Ferromagnetic Ultrafine Particles Prepared by Vacuum Evaporation on Running Oil Substrate. Journal of Crystal Growth, 45, pp. 495-500. 8. Andrews, R., Jacques, D., Qian, D. and Dickey, E. C., 2001. Purification and Structural Annealing of Multiwalled Carbon Nanotubes at graphitization temperatures. Carbon, 39(11), pp. 1681-1687. 9. Anoop, K. B., Sundararajan, T. and Das, S. K., 2009. Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region. International Journal of Heat and Mass Transfer, 52(9-10), pp. 2189-2195. 10. Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos, D. and Lioutas, C., 2005. Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants. International Journal of Thermophysics, 26(3), pp. 647-664. 11. Babu, S. R., Babu, P. R. and Rambabu, V., 2013. Effects of Some Parameters on Thermal Conductivity of Nanofluids and Mechanisms of Heat Transfer Improvement. International Journal of Engineering Research and Applications (IJERA), 3(4), pp. 2136-2140. 12. Bai, B. C., Kim, J. G., Im Ji, S. and Lee, Y. S., 2011. The Hydrogen Storage Capacity of Metal-Containing Polyacrylonitrile-based Electrospun Carbon Nanofibers. Carbon Letters, 12(3), pp. 171-176. 13. Baratpour, M., Karimipour, A., Afrand, M. and Wongwises, S., 2016. Effects of Temperature and Concentration on the Viscosity of Nanofluids Made of Single-Wall Carbon Nanotubes in Ethylene Glycol. International Communications in Heat and Mass Transfer, 74, pp. 108-113. 14. Batchelor, G. K., 1977. The effect of Brownian motion on the Bulk Stress in a Suspension of Spherical Particles. Journal of Fluid Mechanics, 83, pp. 97-117. 15. Benton, A. F. and White, T. A., 1932. Desorption of Gases by Iron. Journal of the American Chemical Society, 54, pp. 1820-1830. 16. Bifano, M. F., Park, J., Kaul, P. B., Roy, A. K. and Prakash, V., 2012. Effects of Heat Treatment and Contact Resistance on the Thermal Conductivity of Individual Multiwalled Carbon Nanotubes Using a Wollaston Wire Thermal Probe. Journal of Applied Physics, 111(5), p.054321. 17. Birch, M. E., Ruda-Eberenz, T. A., Chai, M., Andrews, R. and Hatfield, R. L., 2013. Properties That Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers. Annals of Occupational Hygiene, 57(9), pp. 1148-1166. 18. Boungiorno, J., Hu, L.W., Kim, S.J., Hannink, R., Truong, B. and Forrest, E., 2008. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features Issues, and Research Gaps. Nuclear Technology, 162(1), pp. 80-91. 19. Brinkman, H. C., 1952. The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics, 20, pp. 571-581. 20. Brunauer, S. and Emmet, P. H., 1937. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 59, pp. 1553-1564. 21. Brunauer, S. and Emmet, P. H., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, pp. 309-319. 22. Buonomo, B., Manca, O., Marinelli, L. and Nardini, S., 2015. Effect of Temperature and Sonication Time on Nanofluid Thermal Conductivity Measurements by Nano-flash Method. Applied Thermal Engineering, 91, pp. 181-190. 23. Centrone, A., Brambilla, L., Renouard, T., Gherghel, L., Mathis, C., Müllen, K. and Zerbi, G., 2005. Structure of New Carbonaceous Materials: The Role of Vibrational Spectroscopy. Carbon, 43(8), pp. 1593-1609. 24. Chakraborty, S., Chattopadhyay, J., Peng, H., Chen, Z., Mukherjee, A., Arvidson, R. S., Hauge, R. H. and Billups, W. E., 2006. Surface Area Measurement of Functionalized Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 110(49), pp. 24812-24815. 25. Chand, S., 2000. Review Carbon Fibers for Composites. Journal of Material Science, 35, pp. 1303-1313. 26. Chandrasekar, M., Suresh, S. and Chandra Bose, A., 2010. Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluids. Experimental Thermal and Fluid Science, 34, pp. 210-216. 27. Chandrasekar, M., Suresh, S. and Senthilkumara, T., 2012. Mechanisms Proposed Through Experimental Investigations on Thermophysical Properties and Forced Convective Heat Transfer Characteristics of Various Nanofluids - A Review. Renewable and Sustainable Energy Reviews, 16, pp. 3917-3938. 28. Chen, C. and Wang, X., 2006. Adsorption of Ni (II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Industrial & Engineering Chemistry Research, 45(26), pp. 9144-9149. 29. Chen, H. S., Witharana, S., Jin, Y., Kim, C. and Ding, Y. L., 2009. Predicting the Thermal Conductivity of Liquid Suspensions of Nanoparticles (Nanofluids) Based on Rheology. Particuology, 7, pp. 151-157. 30. Chen, L., Xie, H., Li, Y. and Yu, W., 2008. Nanofluids Containing Carbon Nanotubes Treated by Mechanochemical Reaction. Thermochimica Acta, 477(1-2), pp. 21-24. 31. Chen, W., Tao, X., Wei, D., Wang, H., Yu, Q. and Li, Y., 2015. High-Performance Supercapacitor Based on Actived Carbon-MnO2-Polyaniline Composite, J Mater Sci: Mater Electron, 27(2), pp. 1357-1362. 32. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., 2001. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions. Applied Physics Letters, 79(14), pp. 2252-2254. 33. Chon, C. H., Kihm, K. D., Lee, S. P. and Choi, S. U., 2005. Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid Thermal Conductivity Enhancement. Applied Physics Letters, 87(15), p.153107. 34. Chopkar, M., Das, P. K. and Manna, I., 2006. Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications. Scripta Materialia, 55(6), pp. 549-552. 35. Chougule, S. S. and Sahu, S. K., 2014. Comparative Study of Cooling Performance of Automobile Radiator Using Al2O3-water and Carbon Nanotube-Water Nanofluid. Journal of Nanotechnology in Engineering and Medicine, 5, pp. 1-11. 36. Chowdhury, S., Olima, S., Liu, Y., Saha, M., Bergman, J. and Robison, T., 2016. Poly Dimethylsiloxane/Carbon Nanofiber Nanocomposites: Fabrication and Characterization of 37. Electrical and Thermal Properties. International Journal of Smart and Nano Materials, pp. 1-12. 38. Chuang, H. F., Cooper, S. M., Meyyapan, M. and Cruden, B. A., 2004. Improvement of Thermal Contact Resistance by Carbon Nanotubes and Nanofibers. Journal of Nanoscience and Nanotechnology, 4(8), pp. 964-967. 39. Daungthongsuk, W. and Wongwises, S., 2007. A Critical Review of Convective Heat Transfer of Nanofluids. Renewable and Sustainable Energy Reviews, 11, pp. 797-817. 40. De Jong, K. P. and Geus, J. W., 2000. Carbon Nanofibers: Catalytic Synthesis and Application. Catalysis Reviews, 42 (4), pp. 481-510. 41. Dewar, J., 1904. Physical Constant at Low Temperatures: The Densities of Solid Oxygen, Nitrogen and Hydrogen. Proceedings of the Royal Society of London, 73, pp. 251-261. 42. Ding, Y., Chen, H., He, Y., Lapkin, A., Yeganeh, M., Siller, L. and Butenko, Y.V., 2007. Forced Convective Heat Transfer of Nanofluids. Advanced Powder Technology, 18, pp. 813-824. 43. Ding, Y., Alias, H., Wen, D. and Williams, R. A., 2006. Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 49(1), pp. 240-250. 44. Donnet, J. B., Haidar, B. and Vidal, A. B., (1984). Carbon Fibers. Journal of Applied Polymer Science, 29, pp. 4309. 45. Du, W. F., Wilson, L., Ripmeester, J., Dutrisac, R., Simard, B. and Denommee, S., 2002. Investigation of the Pore Structure of As-Prepared and Purified HiPco Single-Walled Carbon Nanotubes by N2/Ar Adsorption Implication for H2 Storage. Nano Letters, 2(4), pp. 343-346. 46. Duangthongsuk, W. and Wongwises, S., 2010. An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime. International Journal of Heat and Mass Transfer, 53(1), pp. 334-344. 47. Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J. and S., L., 1997. Enhanced Thermal Conductivity Through the Development of Nanofluids. Material Research Society, 457, pp. 3-11. 48. Eastman, J. A., Choi, S. U., Li, S., Yu, W. and Thompson, L. J., 2001. Anomously Increase Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles. Applied Physics Letter, 78, pp. 718-720. 49. Einstein, A., 1906. A New Determination of Molecular Dimensions. Annals of Physics, 19, pp. 289-306. 50. Endo, M., Hayashi, T., Kim, Y. A., Terrones, M. and Dresselhaus, M. S., 2004. Applications of Carbon Nanotubes in the Twenty-First Century. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362(1823), pp. 2223-2238. 51. Endo, M. and Kurita, N., 2002. Molecular Orbital Calculations on Electronic and LI-absorption Properties of Sulfur, Phosphorus, and Silicon Substituted Disordered Carbon. Carbon, 40, pp. 253-260. 52. Endo, M., Kim, Y.A., Hayashi, T., Yanagisawa, T., Muramatsu, H., Ezaka, M., Terrones, H., Terrones, M. and Dresselhaus, M. S., 2003. Microstructural Changes Induced in “Stacked Cup” Carbon Nanofibers by Heat Treatment. Carbon, 41(10), pp. 1941-1947. 53. Esfe, M. H., 2013. Numerical Investigation of Effect of Nanoparticles Diameter on Flow and Heat Transfer in Lid-Driven Cavity with an Inside Hot Obstacle Filled with Nanofluid. Journal of Current Research in Science, 1(2), pp. 61. 54. Fadeel, B., Fornara, A., Toprak, M. S. and Bhattacharya, K., 2015. Keeping It Real: The Importance of Material Characterization in Nanotoxicology. Biochemical and Biophysical Research Communications, 468(3), pp. 498-503. 55. Feng, L., Xie, N. and Zhong, J., 2014. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Journal of Materials, 7, pp. 3919-3945. 56. Ferrari, M., 2005. Cancer Nanotechnology: Opportunities and Challenges. Nature Reviews Cancer, 5, pp. 161-171. 57. Gadipelli, S. and Guo, Z. X., 2015. Graphene-Based Materials: Synthesis and Gas Sorption, Storage and Separation. Progress in Materials Science, 69, pp. 1-60. 58. Gao, J., Zheng, R., Ohtani, H., Zhu, D. and Chen, G., 2009. Experimental Investigation of Heat Conduction Mechanisms in Nanofluids: Clue on Clustering. Nano Letters, 9(12), pp. 4128-4132. 59. Garg, P., Alvarado, J. L., Marsh, C., Carlson, T. A., Kessler, D. A. and Annamalai, K., 2009. An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multiwall Carbon Nanotube-Based Aqueous Nanofluids. International Journal of Heat and Mass Transfer, 52(21-22), pp. 5090-5101. 60. Ghadimi, A., Saidur, R. and Metselaar, H. S. C., 2011. A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. International Journal of Heat and Mass Transfer, 54, pp. 4051-4068. 61. Ghorbani, H. R., 2017. The Study of Thermal Conductivity Silver/Water Nanofluid. Journal of Nanoanalysis, 4(2), pp.116-119. 62. Goudarzi, K., Shojaeizadeh, E. and Nejati, F., 2014. An Experimental Investigation on the Simultaneous Effect of CuO-H2O Nanofluid and Receiver Helical Pipe on the Thermal Efficiency of a Cylindrical Solar Collector. Applied Thermal Engineering, 73, pp. 1236-1243. 63. Gu, W. and Yushin, G., 2013. Review of Nanostructured Carbon Materials for Electrochemical Capacitor Applications: Advantages and Limitations of Activated Carbon, Carbide-Derived Carbon, Zeolite-Templated Carbon, Carbon Aerogels, Carbon Nanotubes, Onion-Like Carbon, and Graphene. WIREs Energy Environ, 3(5), pp. 424-473. 64. Gupta, M., Arora, N., Kumar, R., Kumar, S. and Dilbaghi, N., 2014. A Comprehensive Review of Experimental Investigations of Forced Convective Heat Transfer Characteristics for Various Nanofluids. International Journal of Mechanical and Materials Engineering, 9(11), pp. 1-21. 65. Gupta, V. and Saleh, T. A., 2011. Syntheses of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-Degradation. Carbon Nanotubes- From Research to Applications. InTech. 66. Han, Z., 2008. Nanofluids with Enhanced Thermal Transport Properties. Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park. 67. Hemmat Esfe, M. and Saedodin, S., 2014. Experimental Investigation and Proposed Correlations for Temperature dependent Thermal Conductivity Enhancement of Ethylene Glycol Based Nanofluid Containing ZnO Nanoparticles. Journal of Heat and Mass Transfer Research (JHMTR), 1(1), pp. 47-54. 68. Hentschke, R., 2016. On the Specific Heat Capacity Enhancement in Nanofluids. Nanoscale Research Letters, 11(1), p.88. 69. Hirlekar, R., Yamagar, M., Garse, H., Vij, M. and Kadam, V., 2009. Carbon Nanotubes and Its Applications: A Review. Asian Journal of Pharmaceutical and Clinical Research, 2(4). pp. 17-27. 70. Ho, C. J. and Chen, W. C., 2013. An Experimental Study on Thermal Performance of Al2O3/water Nanofluid in a Mini Channel Heat Sink. Applied Thermal Engineering, 50, pp. 516-522. 71. Homfray, I. F., 1910. On the Absorption of Gases by Charcoal. The Journal of Physical Chemistry, 74, pp. 129. 72. Hou, J., Cao, C., Idrees, F. and Ma, X., 2015. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano, 9(3), pp. 556-2564. 73. Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y. and Pelton, R., 2012. Dissolved and Colloidal Substances (DCS) and the Charge Demand of Papermaking Process Waters and Suspensions: A Review. BioResources, 7(4), pp. 6109-6193. 74. Huminic, G. and Huminic, A., 2012. Application of Nanofluids in Heat Exchangers: A Review. Renewable and Sustainable Energy Reviews, 16, pp. 5625-5638. 75. Hung, Y. H., Teng, T. P. and Lin, B. G., 2013. Evaluation of the Thermal Performance of a Heat Pipe Using Alumina Nanofluids. Experimental Thermal and Fluid Science, 44, pp. 504-511. 76. Hussein, A. M., Sharma, K. V., Bakar, R. A. and Kadirgama, K., 2014. A Review of Forced Convection Heat Transfer Enhancement and Hydrodynamic Characteristics of a Nanofluid. Renewable and Sustainable Energy Reviews, 29, pp. 734-743. 77. Idrus, S. N., Zaini, N. S., Mohamad, I. S., Abdullah, N. and Husin, M. H., 2015. Comparison of Thermal Conductivity for HHT-24-CNF-Based Nanofluid Using Deionized Water and Ethylene Glycol. Jurnal Teknologi, 77(21), pp. 85-89. 78. Jama, M., Singh, T., Gamaleldin, S. M., Koc, M., Samara, A., Isaifan, R. J. and Atieh, M. A., 2016. Critical Review on Nanofluids. Journal of Nanomaterials, pp. 1-22. 79. Jana, S., Salehi-Khojin, A. and Zhong, W. H., 2007. Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-additives. Thermochimica Acta, 462, pp. 45-55. 80. Jiang, J., Zhu, J., Ai, W., Fan, Z., Shen, X., Zou, C., Liu, J., Zhang, H. and Yu, T., 2014. Evolution of Disposable Bamboo Chopsticks into Uniform Carbon Fibers: A Smart Strategy to Fabricate Sustainable Anodes for Li-Ion Batteries. Energy & Environmental Science, 7(8), pp. 2670-2679. 81. Jo, B. and Banerjee, D., 2015. Enhanced Specific Heat Capacity of Molten Salt-Based Carbon Nanotubes Nanomaterials. Journal of Heat Transfer, 137(9), p.091013. 82. Kakac, S. and Pramuanjaroenkij, A., 2009. Review of Convective Heat Transfer Enhancement with Nanofluids. International Journal of Heat and Mass Transfer, 52, pp. 3187-3196. 83. Kannadasan, N., Ramanathan, K. and Suresh, S., 2012. Comparison of Heat Transfer and Pressure Drop in Horizontal and Vertical Helically Coiled Heat Exchanger with CuO/Water Based Nano Fluids. Experimental Thermal and Fluid Science, 42, pp. 64-70. 84. Karami, M., Akhavan-Behabadi, M. A., Raisee Dehkordi, M. and Delfani, S., 2016. Thermo-optical Properties of Copper Oxide Nanofluids for Direct Absorption of Solar Radiation. Solar Energy Materials and Solar Cells, 144, pp. 136-142. 85. Kayhani, M. H., Soltanzadeh, H., Heyhat, M. M., Nazari, M. and Kowsary, F., 2012. Experimental Study of Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid. International Communications in Heat and Mass Transfer, 39(3), pp. 456-462. 86. Kayiran, S. B., Lamari, F. D. and Levesque, D., 2004. Adsorption Properties and Structural Characterization of Activated Carbons and Nanocarbons. The Journal of Physical Chemistry B, 108(39), pp. 15211-15215. 87. Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A., 2002. Mechanisms of Heat Flow in Suspension of Nano-Sized Particles (Nanofluids). Journal of Heat and Mass Transfer, 45(4), pp. 855-63. 88. Khanafer, K., Vafai, K. and Lightstone, M., 2003. Buoyancy Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids. International Journal of Heat and Mass Transfer, 46, pp. 3639-3653. 89. Kim, Y. A., Hayashi, T., Endo, M. and Dresselhaus, M. S., 2011. Carbon Nanofiber. Springer Handbook of Nanomaterial, pp. 2-27. 90. Kim, C. K., Lee, G. J. and Rhee, C. K., 2012. A Study on Heat Transfer Characteristics of Spherical and Fibrous Alumina Nanofluids. Thermochimica Acta, 542, pp. 33-36. 91. Koo, J. and Kleinstreuer, C., 2004. A New Thermal Conductivity Model for Nanofluids. Journal of Nanoparticle Research, 6(6), pp. 577-588. 92. Kole, M. and Dey, T. K., 2012. Effect of Prolonged Ultrasonication on the Thermal Conductivity of ZnO-Ethylene Glycol Nanofluids. Thermochimica Acta, 535, pp. 58-65. 93. Kole, M. and Dey, T. K., 2010. Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant. Experimental Thermal and Fluid Science, 34(6), pp. 677-683. 94. Kosaka, M., Ebbesen, T. W., Hiura, H. and Tanigaki, K., 1995. Annealing Effect on Carbon Nanotubes. Chemical Physical Letter, 233, pp. 47-51. 95. Kostic, M. M., 2006. Analysis of Enthalpy Approximation for Compressed Liquid Water. Journal of Heat Transfer, 128(5), pp. 421-426. 96. Krug, H. F. and Wick, P., 2011. Nanotoxicology: An Interdisciplinary Challenge. Angewandte Chemie International Edition, 50(6), pp. 1260-1278. 97. Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids and Liquids. Journal of the American Chemical Society, 38, pp. 2221-2295. 98. Lastoskie, C., Gubbins, K. E. and Quirke, N., 1993. Pore Size Distribution Analysis of Microporous Carbons: A Density Functional Theory Approach. The Journal of Physical Chemistry, 97(18), pp. 4786-4796. 99. Lee, D., Kim, J.W. and Kim, B.G., 2006. A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension. Journal of Physical Chemistry, pp. 4323-4328. 100. Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A., 1999. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat Transfer, 121(2), pp. 280-289. 101. Leong, K.Y., Saidur, R., Kazi, S. N. and Mamun, A. H., 2010. Performance Investigation of an Automotive Car Radiator Operated with Nanofluid-Based Coolants. Applied Thermal Engineering, 30, pp. 2685-2692. 102. Liang, Y., Wu, D. and Fu, R., 2013. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. Scientific Reports, 3. 103. Li, F., Wang, Y., Wang, D. and Wei, F., 2004. Characterization of Single-Wall Carbon Nanotubes by N2 Adsorption. Carbon, 42(12), pp. 2375-2383. 104. Li, X., Chen, Y., Huang, H., Mai, Y.W. and Zhou, L., 2016. Electrospun Carbon-Based Nanostructured Electrodes for Advanced Energy Storage-A Review. Energy Storage Materials, 5, pp. 58-92. 105. Li, C. H. and Peterson, G. P., 2006. Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids). Journal of Applied Physics, 99(8), p.084314. 106. Lin, Y. H., Kang, S. W. and Chen, H. L., 2008. Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance. Applied Thermal Engineering, 28(11), pp. 1312-1317. 107. Liu, M. S., Ching-Cheng Lin, M., Huang, I. T. and Wang, C. C., 2005. Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids. International Communications in Heat and Mass Transfer, 32, pp. 1202-1210. 108. Lo, C. H., Tsung, T. T. and Chen, L. C., 2005. Shape Controlled Synthesis of Cu based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS). Journal of Crystal Growth, 277, pp. 636-642. 109. Lu, W., Zu, M., Byun, J. H., Kim, B. S. and Chou, T. W., 2012. State of The Art of Carbon Nanotube Fibers: Opportunities and Challenges. Advanced Materials, 24, pp. 1805-1833. 110. Luna, I. Z., Chowdhury, A. S., Gafur, M. A. and Khan, R. A., 2016. Measurement of Forced Convective Heat Transfer Coefficient of Low Volume Fraction CuO-PVA Nanofluids under Laminar Flow Condition. American Journal of Nanomaterials, 3(2), pp. 64-67. 111. Ma, H. B., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., and Choi, S. U., 2006. Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe. Applied Physics Letter, 88, pp. 116-143. 112. Mackie, E. B., Wolfson, R. A., Arnold, L. M., Lafdi, K. and Migone, A. D., 1997. Adsorption Studies of Methane Films on Catalytic Carbon Nanotubes and on Carbon Filaments. Langmuir, 13(26), pp. 7197-7201. 113. Mahbubul, I. M., Shahrul, I. M., Khaleduzzaman, S. S., Saidur, R., Amalina, M. A. and Turgut, A., 2015. Experimental Investigation on Effect of Ultrasonication Duration on Colloidal Dispersion and Thermophysical Properties of Alumina-Water Nanofluid. International Journal of Heat and Mass Transfer, 88, pp. 73-81. 114. Mahbubul, I. M., Saidur, R., Amalina, M. A., 2013. Thermal Conductivity, Viscosity and Density of R141b Refrigerant Based Nanofluid. Procedia Engineering, 56, pp. 310-315. 115. Mare, T., Halelfadl, S., Sow, O., Estelle, P., Duret, S. and Bazantay, F., 2011. Comparison of the Thermal Performances of Two Nanofluids at Low Temperature in a Plate Heat Exchanger. Experimental Thermal and Fluid Science, 35, pp. 1535-1543. 116. Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N., 1993. Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles. Netsu Bussei, 7(4), pp. 227-233. 117. Mintsa, H.A., Roy, G., Nguyen, C.T. and Doucet, D., 2009. Temperature Dependent Thermal Conductivity Data for Water-based Nanofluids. International Journal of Thermal Sciences, 48, pp. 363-371. 118. Mohamad, I. S., Chitrambalam, S. T., Hamid, S. B. A., Chin, W. M., Yau, K. H. and Febrian, I., 2013. A Comparison Study on the Heat Transfer Behavior of Aqueous Suspensions of Rod Shaped Carbon Nanotubes with Commercial Carbon Nanotubes. Advanced Materials Research, 667, pp. 35-42. 119. Mohamad, I. S., Chitrambalam, S. T. and Hamid, S. B. A., 2012. Investigations on the Thermo-Physical Properties of Nanofluid-Based Carbon Nanofibers under Modified Testing Conditions. International Journal of Nanoelectronics and Materials, 5(1), pp. 25-30. 120. Mohammed, H. A., Bhaskaran, G., Shuaib, N. H. and Saidur, R., 2011. Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger Using Nanofluids: A Review. Renewable and Sustainable Energy Reviews, 15, pp. 1502-1512. 121. chemistry.msu.edu, 2013. Infrared Spectroscopy. [Online] Available at: https://www2.chemistry.msu.edu (Accessed on 26 May 2018). 122. Mukherjee, S. and Paria, S., 2013. Preparation and Stability of Nanofluids-A Review. IOSR International Journal of Mechanical and Civil Engineering, pp. 63-69. 123. Murshed, S. M., Leong, K. C. and Yang, C., 2005. Enhanced Thermal Conductivity of TiO2-Water based nanofluids. International Journal of Thermal Sciences, 44, pp. 367-373. 124. Murshed, S. M. S., Leong, K. C. and Yang, C., 2008. Investigations of Thermal Conductivity and Viscosity of Nanofluids. International Journal of Thermal Sciences, 47(5), pp. 560-568. 125. Namburu, P.K., Kulkarni, D.P., Dandekar, A. and Das, D.K., 2007. Experimental Investigation on Viscosity and Specific Heat of Silicon Dioxide Nanofluids. Micro Nano Letter, 2, pp. 67-71. 126. Naseh, M. V., Khodadadi, A. A., Mortazavi, Y., Sahraei, O. A., Pourfayaz, F. and Sedghi, S. M., 2009. Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma. International Journal of Chemical and Biological Engineering, 37, pp. 177–179. 127. Nasiri, A., Shariaty-Niasar, M., Rashidi, A. and Khodafarin, R., 2012. Effect of CNT Structures on Thermal Conductivity and Stability of Nanofluid. International Journal of Heat and Mass Transfer, 55(5), pp. 1529-1535. 128. Nazari, M., Karami, M. and Ashouri, M., 2014. Comparing the Thermal Performance of Water, Ethylene Glycol, Alumina and CNT nanofluids in CPU Cooling: Experimental Study. Experimental Thermal and Fluid Science, 57, pp. 371-377. 129. Ngo, Q., Cruden, B. A., Cassell, A. M., Sims, G., Meyyappan, M., Li, J. and Yang, C.Y., 2004. Thermal Interface Properties of Cu-Filled Vertically Aligned Carbon Nanofiber Arrays. Nano Letters, 4(12), pp. 2403–2407. 130. Nguyen, C. T., Roy, G., Gauthier, C. and Galanis, N., 2007. Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System. Applied Thermal Engineering, 27(8), pp. 1501-1506. 131. Nien, Y. H., 2011. The Application of Carbon Nanotube to Bone Cement. In Carbon Nanotubes-Polymer Nanocomposites. InTech. 132. Özerin., S., 2012. Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review. Microfluidics and Nanofluidics, pp. 145-170. 133. Pantzali, M. N., Kanaris, A. G., Antoniadis, K. D., Mouza, A. A. and Paras, S. V., 2009. Effect of Nanofluids on the Performance of a Miniature Plate Heat Exchanger with modulated surface. International Journal of Heat and Fluid Flow, 30(4), pp. 691-699. 134. Peebles, L. H., Yanovsky, Y. G., Sirota, A. G., Bogdanov, V. V. and Levit, P. M., 1998. Mechanical Properties of Carbon Nanofiber. Carbon Fiber, pp. 311-370. 135. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R. and Rousset, A., 2001. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon, 39(4), pp. 507-514. 136. Phuoc, T. X., Massoudi, M. and Chen, R. H., 2011. Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan. International Journal of Thermal Sciences, 50(1), pp. 12-18. 137. Bandaru, P. R., 2007. Electrical Properties and Applications of Carbon Nanotube Structures. Journal of Nanoscience and Nanotechnology, 7(4-1), pp. 1239-1267. 138. Pyrografproducts.com., 2011. Pyrograf-III Carbon Nanofiber, Stacked-Cup Carbon Nanotubes. [Online] Available at: http://pyrografproducts.com/nanofiber (Accessed on 18 September 2016). 139. Quantachrome Instruments, 2013. Autosorb-6B Surface Area and Pore Size Analyzer, Quantachrome Corporation (USA): Brochure. 140. Ramsay, W., 1905. A Determination of the Amounts of Neon and Helium in Atmospheric Air. Proceedings of the Royal Society of London, 76, pp. 111-114. 141. Rao, G. S, Sharma, K. V., Chary, S. P., Bakar, R. A., Rahman, M. M., Kadirgama, K. and Noor, M. M., 2011. Experimental Study on Heat Transfer Coefficient and Friction Factor of Al2O3 Nanofluid in a Packed Bed Column. Journal of Mechanical Engineering and Sciences (JMES). 1, pp. 1-5. 142. Rashmi, S. H., Raizada, A., Madhu, G. M., Kittur, A. A., Suresh, R. and Sudhina, H. K., 2014. Influence of Zinc Oxide Nanoparticles on Structural and Electrical Properties of Polyvinyl Alcohol Films. Plastics, Rubber and Composites, 44(1), pp.33-39. 143. Ravi Sankar, B., Rao, N. and Rao, S., 2012. Nanofluid Thermal Conductivity - A Review. International Journal of Advances in Engineering and Technology, 5, pp. 13-28. 144. Raymundo-Pinero, E., Cazorla-Amorós, D., Linares-Solano, A., Delpeux, S., Frackowiak, E., Szostak, K. and Béguin, F., 2002. High Surface Area Carbon Nanotubes Prepared by Chemical Activation. Carbon, 40(9), pp. 1614-1617. 145. Roberts, N. A. and Walker, D. G., 2010. Convective Performance of Nanofluids in Commercial Electronics Cooling Systems. Applied Thermal Engineering, 30(16), pp. 2499-2504. 146. Rodriguez, N. M., Chambers, A. and Baker, R. T., 1995. Catalytic Engineering of Carbon Nanostructures. Langmuir, 11, pp. 3862-3866. 147. Ruan, B. and Jacobi, A. M., 2012. Ultrasonication Effects on Thermal and Rheological Properties of Carbon Nanotubes Suspensions. Nanoscale Research Letters, 7(1), pp. 127. 148. Sabiha, M. A., Mostafizur, R. M., Saidur, R. and Mekhilef, S., 2016. Experimental Investigation on Thermo Physical Properties of Single Walled Carbon Nanotube Nanofluids. International Journal of Heat and Mass Transfer, 93, pp. 862-871. 149. Sadeghinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Latibari, S. T., Akhiani, A. R. and Metslaar, H. S. C., 2014. A Comprehensive Review on Graphene Nanofluids: Recent Research, Development and Applications. Energy Conversion and Management, 111, pp. 466-487. 150. Said, Z., Saidur, R., Sabiha, M. A., Rahim, N. A. and Anisur, M. R., 2015. Thermophysical Properties of Single Wall Carbon Nanotubes and Its Effect on Exergy Efficiency of a Flat Plate Solar Collector. Solar Energy, 115, pp. 757-769. 151. Said, Z., Allagui, A., Abdelkareem, M. A., Alawadhi, H. and Elsaid, K., 2018. Acid-Functionalized Carbon Nanofibers for High Stability, Thermoelectrical and Electrochemical Properties of Nanofluids. Journal of Colloid and Interface Science, 520, pp. 50-57. 152. Saidur, R., Leong, K.Y. and Mohammad, H. A., 2011. A Review on Application and Challenges of Nanofluids. Renewable and Sustainable Energy Reviews, 15, pp. 1646-1668. 153. Sarit, K., Das, Stephen, U. S., Choi, Wenhua, Yu, T. and Pradeep, 2008. Nanofluids, Science and Technology, John Wiley & Sons, Inc. 154. Schumacher, K., Ravikovitch, P. I., Du Chesne, A., Neimark, A. V. and Unger, K. K., 2000. Characterization of MCM-48 Materials. Langmuir, 16(10), pp. 4648-4654. 155. Shahrul, I. M., Mahbubul, I. M., Khaleduzzaman, S. S., Saidur, R. and Sabri, M. F. M., 2014. A Comparative Review on the Specific Heat of Nanofluids for Energy Perspective. Renewable and Sustainable Energy Reviews, 38, pp. 88-98. 156. Shivasanmugam, P., 2012. Application of Nanofluid in Heat Transfer. Mechanical Engineering, pp. 1-10. 157. Simon, P. and Gogotsi, Y., 2008. Materials for Electrochemical Capacitors. Nature Materials, 7(11), pp. 845-854. 158. Singh, A. K., 2008. Thermal Conductivity of Nanofluids. Defence Science Journal, 58(5), pp. 600-607. 159. Singh, A. K. and Raykar, V. S., 2008. Microwave Synthesis of Silver Nanofluids with Polyvinylpyrrolidone (PVP) and Their Transport Properties. Journal of Colloid Science, 286, pp. 1667-1673. 160. Singh, D., Toutbort, J. and Chen, G., 2006. Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation. Annual Report, Argonne National Laboratory. 161. Socrates, G., 2004. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons. 162. Sohel, M. R., Khaleduzzaman, S. S., Saidur, R., Hepbasli, A., Sabri, M. F. M. and Mahbubul, I. M., 2014. An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O3-H2O Nanofluid. International Journal of Heat and Mass Transfer, 74, pp. 164-172. 163. Solangi, K. H., Kazi, S. N., Luhur, M. R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M. N. M., Gharehkhani, S. and Teng, K. H., 2015. A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids. Energy. 89, pp. 1065-1086. 164. Souza, N., Zeiger, M., Presser, V. and Mücklich, F., 2015. In Situ Tracking of Defect Healing and Purification of Single-Wall Carbon Nanotubes with Laser Radiation by Time-Resolved Raman Spectroscopy. RSC Advances, 5(76), pp. 62149-62159. 165. Sureshkumar, R., Tharves Mohideen, S. and Nethaji, N., 2013. Heat Transfer Characteristics of Nanofluids in Heat Pipes: A Review. Renewable and Sustainable Energy Reviews, 20, pp. 397-410. 166. Sundar, L. S., Farooky, M. H., Sarada, S. N. and Singh, M. K., 2013. Experimental Thermal Conductivity of Ethylene Glycol and Water Mixture Based Low Volume Concentration of Al2O3 and CuO nanofluids. International Communications in Heat and Mass Transfer, 41, pp. 41-46. 167. Taurozzi, J., Hackley, V. and Wiesner, M., 2012. Preparation of Nanoparticle Dispersions from Powdered Material using Ultrasonic Distruption in: NanoEHS Protocols. National Institute of Standards and Technology, Gaithersburg, Maryland. 168. Thommes, M., 2010. Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), pp. 1059-1073. 169. Titirici, M.M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., Del Monte, F., Clark, J.H. and MacLachlan, M.J., 2015. Sustainable Carbon Materials. Chemical Society Reviews, 44(1), pp. 250-290. 170. Tsai, T. H., Kuo, L. S., Chen, P. H. and Yang, C. T., 2008. Effect of Viscosity of Base Fluid on Thermal Conductivity of Nanofluids. Applied Physics Letters, 93(23), pp. 233121. 171. Turgut, A. and Elbasan, E., 2014. Nanofluids for Electronics Cooling. IEEE 20th International Symposium for Design and Technology in Electronic Packaging (SHITME), pp. 35-37. 172. Utomo, A. T., Poth, H., Robbins, P. T. and Pacek, A. W., 2012. Experimental and Theoretical Studies of Thermal Conductivity, Viscosity and Heat Transfer Coefficient of Titania and Alumina Nanofluids. International Journal of Heat and Mass Transfer, 55, pp. 7772-7781. 173. Vales-Pinzon, C., Vega-Flick, A., Pech-May, N.W., Alvarado-Gil, J. J., Medina-Esquivel, R.A., Zambrano-Arjona, M. A. and Mendez-Gamboa, J. A., 2016. Increasing the Thermal Conductivity of Silicone Based Fluids Using Carbon Nanofibers. Journal of Applied Physics, 120(20), p.205109. 174. Vajjha, R. S. and Das, D. K., 2009. Specific Heat Measurement of Three Nanofluids and Development of New Correlations. Journal of heat transfer, 131(7), p.071601. 175. Vasu, V., Rama Krishna, K. and Kumar, A. C. S., 2009. Heat Transfer with Nanofluids for Electronic Cooling. International Journal of Materials and Product Technology, 34(1-2), pp. 158-171. 176. Wang, X. J. and Li, X. F., 2009. Influence of pH on Nanofluids Viscosity and Thermal Conductivity. Chinese Physics Letters, 26(5), pp. 056601. 177. Wang, X., Xu, X. and Choi, S. U. S., 1999. Thermal Conductivity of Nanoparticle-Fluid Mixture. Journal of Thermophysics and Heat Transfer, 13(4), pp. 474-480. 178. Wang, C. S. and Alexander, M. D., 2004. Method for Forming Conductive Polymeric Nanocomposite Materials. U.S. Patent, 6. 179. Wang, X. Q. and Mujumdar, A. S., 2007. Heat Transfer Characteristics of Nanofluids: A 180. Review. International Journal of Thermal Sciences, 46, pp. 1-19. 181. Wei, X. and Wang, L., 2010. Synthesis and Thermal Conductivity of Microfluidic Copper Nanofluid. Particuology, 8(3), pp. 262-271. 182. Wong, S. W., Leung, K. M. and Djurisic, A. B., 2013. A Comprehensive Review on the Aquatic Toxicity of Engineered Nanomaterials. Nanoscience and Nanotechnology, 2(2), pp. 79-105. 183. Wong, K.V. and De Leon, O., 2010. Applications of Nanofluids: Current and Future. Advances in Mechanical Engineering, 2, pp. 1-11. 184. Wu, Z., Wang, L., Sunden, B. and Wadso, L., 2016. Aqueous Carbon Nanotube Nanofluids and Their Thermal Performance in a Helical Heat Exchanger. Applied Thermal Engineering, 96, pp. 364-371. 185. Xing, M., Yu, J. and Wang, R., 2015. Experimental Study on the Thermal Conductivity Enhancement of Water Based Nanofluids using Different Types of Carbon Nanotubes. International Journal of Heat and Mass Transfer, 88, pp. 609-616. 186. Xiang, C., Behabtu, N., Liu, Y., Chae, H.G., Young, C.C., Genorio, B. and Tour, J.M. 2013. Graphene Nanoribbons as an Advanced Precursor for Making Carbon Fiber. ACS Nano, 7, pp. 1628-1637. 187. Xuan, Y., Li, Q. and Hu, W., 2003. Aggregation Structure and Thermal Conductivity of Nanofluids. American Institute of Chemical Engineers (AIChE), 49(4), pp. 1038-1043. 188. Xuan, Y. and Li, Q., 2000. Heat Transfer Enhancement of Nanofluids. International Journal of Heat and Fluid Flow, 21, pp. 58-64. 189. Yaceman, M. J., Yoshida, M. M., Rendson and Santiestaban, J. G., 1993. Catalytic Growth of Carbon Micro Tubules with Fullerenes Structure. Applied Physics Letter Colume, 62, pp. 202-204. 190. Yan, X., Tai, Z., Chen, J. and Xue, Q., 2011. Fabrication of Carbon Nanofiber-Polyaniline Composite Flexible Paper for Supercapacitor. Nanoscale, 3(1), pp. 212-216. 191. Yang, X. F. and Liu, Z. H., 2011. Pool Boiling Heat Transfer of Functionalized Nanofluid under Sub-Atmospheric Pressures. International Journal of Thermal Sciences, 50(12), pp. 2402-2412. 192. Yanjiao Lia, B., Zhoua, J., Tungc, S., Schneiderc, E. and Xia, S., 2009. A Review on Development of Nanofluid Preparation and Characterization. Powder Technology, 196(2), pp. 89-101. 193. Younes, H., Christensen, G., Li, D., Hong, H. and Al Ghaferi, A., 2015. Thermal Conductivity of Nanofluids: Review. Journal of Nanofluids, 4(2), pp. 107-132. 194. Yu, C., Saha, S., Zhou, J., Shi, L., Cassell, A. M., Cruden, B. A., Ngo, Q. and Li, J., 2006. Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber. Journal of Heat Transfer, 128(3), pp. 234-239. 195. Yu, W. and Xie, H., 2012. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials, 2012, pp. 1-17. 196. Zawrah, M. F., Khattab, R. M., Girgis, L. G., El Daidamony, H. and Abdel Aziz, R. E., 2015. Stability and Electrical Conductivity of Water-Base Al2O3 Nanofluids for Different Applications. HRBC Journal. 197. Zelenka, T., 2016. Adsorption and Desorption of Nitrogen at 77 K on Micro- and Meso- Porous Materials: Study of Transport Kinetics. Microporous and Mesoporous Materials, 227, pp. 202-209. 198. Zhai, Y., Dou, Y., Zhao, D., Fulvio, P., Mayes, R. and Dai, S., 2011. Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 23(42), pp. 4828-4850. 199. Zhaoguo, M., Daxiong, W., Wang, L., Zhu, H. and Li, Q., 2012. Carbon Nanotube Glycol Nanofluids: Photo-Thermal Properties, Thermal Conductivities and Rheological Behavior. Particuology, 10(5), pp. 614-618. 200. Zhou, S. Q. and Ni, R., 2008. Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid. Applied Physics Letters, 92(9), p.093123. 201. Zhu, H., Lin, Y. and Yin, Y., 2004. A Novel One-Step Chemical Method for Preparation of Copper Nanofluids. Journal of Colloid and Interface Science, 227, pp. 100-103.