Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating

Recently, more research have been conducted towards decorating iron oxide with MWCNTs to form nanostructured materials. This is due to the unique amphoteric properties of iron oxide that offers the flexibility on shifting the surface charge of iron oxide as well as physicochemical properties obtaine...

Full description

Saved in:
Bibliographic Details
Main Author: Abu Bakar, Noor Farah Iddayu
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/24684/1/Synthesis%20Of%20Hematite%20Mwcnts%20Nanocomposite%20Through%20Thermal%20Oxidation%20And%20Spin%20Coating.pdf
http://eprints.utem.edu.my/id/eprint/24684/2/Synthesis%20Of%20Hematite%20Mwcnts%20Nanocomposite%20Through%20Thermal%20Oxidation%20And%20Spin%20Coating.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.24684
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Ismail, Syahriza

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Abu Bakar, Noor Farah Iddayu
Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating
description Recently, more research have been conducted towards decorating iron oxide with MWCNTs to form nanostructured materials. This is due to the unique amphoteric properties of iron oxide that offers the flexibility on shifting the surface charge of iron oxide as well as physicochemical properties obtained by MWCNTs. This iron oxides decorated with MWCNTs have shown photocatalytic, optical and visible light photoelectrochemical performance. This project has focused on the optimization of the growth process of α-Fe2O3 nanowires and decorated with MWCNTs to form α-Fe2O3/MWCNTs nanocomposite. This combination is then used for the photocatalysis application. Previously, iron oxide had limitation as photocatalyst because electron-hole charge recombination on the oxide surface and charge transportation as well as limitation in visible-light responsive. Hence, by combining with MWCNTs forming nanocomposite it would give the opportunity to extend the absorption wavelength of the UV light to visible light region and promote the generation and separation of photogenerated carrier in photocatalytic application. In this work, nanostructure was synthesized on Fe foil by oxidation process approach. Fe foil was used as substrate to grow the nanostructure. In order to get a good control of the dimension and high aspect ratio of the nanostructure, several parameter were investigated such as effect of oxidation temperature, time and condition on the substrate. The morphology and phase of α-Fe2O3 nanowires formed was characterized using FESEM, XRD and Raman. Under optimized oxidation condition (400 °C and 120 minutes), the length of nanowires are reached 1 - 1.8 μm and average nanostructure diameter is 40 - 70 nm. The density, length and diameter was found to be affected by the oxidation time and temperature. These factors influenced the rate of diffusion during oxidation thus will reflected the thickness of oxide layer. While, the composite sample of α-Fe2O3/MWCNTs nanocomposite were successfully formed by the spin coating of MWCNTs on the α-Fe2O3 nanostructure produced by optimized condition of 3500 rpm. The treatment of MWCNTs in 3 M HNO3 was conducted before spin coated on the α-Fe2O3 substrate to improve the solubility of MWCNTs in solvent. It was found that treated MWCNTs has shown better dispersion in DMF solvent. α-Fe2O3 nanostructure and α-Fe2O3/Fe2O3/MWCNTs were subjected to photocatalytic degradation using 30 ppm methyl orange for 5 hours of discoloration. Comparison studies in morphology and structure were performed between α-Fe2O3 thin film and α-Fe2O3/MWCNTs with different amount of MWCNTs to getting good interaction between α-Fe2O3 and MWCNTs. As the conclusion, α-Fe2O3/MWCNTs composite with 0.25 mg of MWCNTs was found to be more effective in the degradation of methyl orange compare to the bare α-Fe2O3 thin film.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Abu Bakar, Noor Farah Iddayu
author_facet Abu Bakar, Noor Farah Iddayu
author_sort Abu Bakar, Noor Farah Iddayu
title Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating
title_short Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating
title_full Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating
title_fullStr Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating
title_full_unstemmed Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating
title_sort synthesis of hematite/mwcnts nanocomposite through thermal oxidation and spin coating
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Manufacturing Engineering
publishDate 2019
url http://eprints.utem.edu.my/id/eprint/24684/1/Synthesis%20Of%20Hematite%20Mwcnts%20Nanocomposite%20Through%20Thermal%20Oxidation%20And%20Spin%20Coating.pdf
http://eprints.utem.edu.my/id/eprint/24684/2/Synthesis%20Of%20Hematite%20Mwcnts%20Nanocomposite%20Through%20Thermal%20Oxidation%20And%20Spin%20Coating.pdf
_version_ 1747834087929806848
spelling my-utem-ep.246842021-10-05T10:46:49Z Synthesis Of Hematite/Mwcnts Nanocomposite Through Thermal Oxidation And Spin Coating 2019 Abu Bakar, Noor Farah Iddayu T Technology (General) TA Engineering (General). Civil engineering (General) Recently, more research have been conducted towards decorating iron oxide with MWCNTs to form nanostructured materials. This is due to the unique amphoteric properties of iron oxide that offers the flexibility on shifting the surface charge of iron oxide as well as physicochemical properties obtained by MWCNTs. This iron oxides decorated with MWCNTs have shown photocatalytic, optical and visible light photoelectrochemical performance. This project has focused on the optimization of the growth process of α-Fe2O3 nanowires and decorated with MWCNTs to form α-Fe2O3/MWCNTs nanocomposite. This combination is then used for the photocatalysis application. Previously, iron oxide had limitation as photocatalyst because electron-hole charge recombination on the oxide surface and charge transportation as well as limitation in visible-light responsive. Hence, by combining with MWCNTs forming nanocomposite it would give the opportunity to extend the absorption wavelength of the UV light to visible light region and promote the generation and separation of photogenerated carrier in photocatalytic application. In this work, nanostructure was synthesized on Fe foil by oxidation process approach. Fe foil was used as substrate to grow the nanostructure. In order to get a good control of the dimension and high aspect ratio of the nanostructure, several parameter were investigated such as effect of oxidation temperature, time and condition on the substrate. The morphology and phase of α-Fe2O3 nanowires formed was characterized using FESEM, XRD and Raman. Under optimized oxidation condition (400 °C and 120 minutes), the length of nanowires are reached 1 - 1.8 μm and average nanostructure diameter is 40 - 70 nm. The density, length and diameter was found to be affected by the oxidation time and temperature. These factors influenced the rate of diffusion during oxidation thus will reflected the thickness of oxide layer. While, the composite sample of α-Fe2O3/MWCNTs nanocomposite were successfully formed by the spin coating of MWCNTs on the α-Fe2O3 nanostructure produced by optimized condition of 3500 rpm. The treatment of MWCNTs in 3 M HNO3 was conducted before spin coated on the α-Fe2O3 substrate to improve the solubility of MWCNTs in solvent. It was found that treated MWCNTs has shown better dispersion in DMF solvent. α-Fe2O3 nanostructure and α-Fe2O3/Fe2O3/MWCNTs were subjected to photocatalytic degradation using 30 ppm methyl orange for 5 hours of discoloration. Comparison studies in morphology and structure were performed between α-Fe2O3 thin film and α-Fe2O3/MWCNTs with different amount of MWCNTs to getting good interaction between α-Fe2O3 and MWCNTs. As the conclusion, α-Fe2O3/MWCNTs composite with 0.25 mg of MWCNTs was found to be more effective in the degradation of methyl orange compare to the bare α-Fe2O3 thin film. 2019 Thesis http://eprints.utem.edu.my/id/eprint/24684/ http://eprints.utem.edu.my/id/eprint/24684/1/Synthesis%20Of%20Hematite%20Mwcnts%20Nanocomposite%20Through%20Thermal%20Oxidation%20And%20Spin%20Coating.pdf text en public http://eprints.utem.edu.my/id/eprint/24684/2/Synthesis%20Of%20Hematite%20Mwcnts%20Nanocomposite%20Through%20Thermal%20Oxidation%20And%20Spin%20Coating.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=116858 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Manufacturing Engineering Ismail, Syahriza 1. Abd Malek, M. H., Saad, N. H., Kiyai, A. S., and Mohd Shah, N., 2013. Thermal Arc Spray Overview. Materials Science and Engineering, 46(1), pp. 1-10. 2. Abou-Elela, S. I., Hellal, M. S., Aly, O. H., and Abo-Elenin, S. A., 2019. Decentralized Wastewater Treatement using Passively Aerated Biological Filter. Environmental Technology, 40(2), pp. 250-260. 3. Ahmad, M., Ahmed, E., Hong, Z., Ahmed, Waqar, Elhissi, And, A., and Khalid, N. R., 2014. Photocatalytic, Sonocatalytic and Sonophotocatalytic Degradation of Rhodamine B using ZnO/CNTs Composites Photocatalysts Photocatalytic, Sonocatalytic and Sonophotocatalytic Degradation of Rhodamine B using MWCNTs-ZnO Nanophotocatalysts. Ultrasonics Sonochemistry, 21(2), pp. 761-773. 4. Ahmed, D. S., Haider, A. J., and Mohammad, M. R., 2013. Comparesion of Functionalization of Multi-Walled Carbon Nanotubes Treated by Oil Olive and Nitric Acid and their Characterization. Energy Procedia, 36, pp. 1111-1118. 5. Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., 1993. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature, 362(6420), pp. 522-525. 6. Akhavan, O., 2010. Thickness Dependent Activity of Nanostructured TiO2/Fe2O3 Photocatalyst Thin Films. Applied Surface Science, 257(5), pp. 1724-1728. 7. Alsharef, J. M., Taha, M. R., and Khan, T. A., 2017. Physical Dispersion of Nanocarbons in Composites - A Review. Journal Technology, 79(5), pp. 1-6. 8. Ali, A., Hira Zafar, M. Z., Ul Haq, I., Phull, A. R., Ali, J. S., and Hussain, A., 2016. Synthesis, Characterization, Applications and Challenges of Iron Oxide Nanoparticles. Nanotechnology, Science and Applications, 9, pp. 49-67. 9. Alwash, A., Adil, H., Yousif, E., and Hussain, Z., 2018. Potential of Carbon Nanotubes in Enhance of Photocatalyst Activity. RCS Advances, 1(3), pp. 65-70. 10. Andrievski, R. A., 2009. Size-dependent Effects in Properties of Nanostructured Materials. Review on Advanced Materials Science, 21, pp. 107-133. 11. Ariffin, N., Abdullah, M. M. A. B., Zainol, M. R. R. M. A., Murshed, M. F., Faris, M. A., and Bayuaji, R., 2017. Review on Adsorption of Heavy Metal in Wastewater by using Geopolymer. RCS Advances, 97, pp. 1-8. 12. Atieh, M. A., Bakather, O. Y., Al-Tawbini, B., Bukhari, A. A., Abuilaiwi, F. A., and Fettouhi, M. B., 2010. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorganic Chemistry and Applications, 2010, pp. 1-9. 13. Aviles, F., Cauich-Rodriguez, J. V., Moo-Tah, L., May-Pat, A., and Vargas-Coronado, R., 2009. Evaluation of Mild Acid Oxidation Treatments for MWCNTs Functionalization. Carbon, 47(13), pp. 2970-2975. 14. Bai, W., Wu, Z., Mitra, S., and Brown, J. M., 2016. Effect of Multi-Walled Carbon Nanotube Surface Modification and Purification on Bovine Serum Albumin Binding and Biological responses. Journal of Nanomaterials, 2016, pp. 1-4. 15. Bakar, F. I. A., Ismail, S., Nurulnabilah, A., and Shahadan, M. S., 2018. Synthesis of α-Fe2O3 Nanowires/MWCNTs Composite for Photocatalyst. Journal of Physics, 1082(1), pp. 1-6. 16. Barberio, M., Barone, P., Stranges, F., Romano, R. A., Xu, F., and Bonanno, A., 2014. Adsorption of Molecular Gases on Silver/Carbon Nanotube Composites at Low Temperature and Low Pressures. Journal of Chemistry, 2014, pp. 1-7. 17. Barroso, M., Pendlebury, S. R., Cowan, A. J., and Durrant, J. R., 2013. Charge Carrier Trapping, Recombination and Transfer in Hematite (α-Fe2O3) Water Splitting Photoanodes. Chemical Science, 4(7), pp. 2724-2734. 18. Barry, A., 2011. Hydrophobicity, Hydrophilicity and Silane Surface Modification, 2nd., Gelest Inc: Morrisville. 19. Bakaran, D., Mays, J. W., and Bratcher, M. S., 2005. Polymer Adsorption in the Grafting Reaction of Hydroxyl Terminal Polymer with Multi Walled Carbon Nanotubes. Polymer, 46(14), pp. 5050-5057. 20. Bassi, P. S., Gurudayal, Wong, L. H., and Barber, J., 2014. Iron based Photoanodes for Solar Fuel Production. Physical Chemistry Chemical Physics, 16(24), pp. 11834-11842. 21. Bassi, P. S., Sritharan, T., and Wong, L. H., 2018. Recent Progress in Iron Oxide based Photoanodes for Solar Water Splitting. Journal of Physics D: Applied Physics, 51(47), pp. 1-28. 22. Benetti, D., Dembele, K. T., Benavides, J., Zhao, H., Cloutier, S., Concina, Vomiero, A., and Rosei, F., 2016. Functionalized Multi Walled Carbon Nanotubes/TiO2 Composites as Efficient Photoanodes for Dyes Sensitized Solar Cells. Journal of Materials Chemistry C, 4(16), pp. 3555-3562. 23. Bertrand, N., Desgranges, C., Poquillon, D., Lafont, M. C., and Monceau, D., 2010. Iron Oxidation at Low Temperature (260 - 500 °C) in Air and the Effect of Water Vapor. Oxidation of Metals, 73(1-2), pp. 139-162. 24. Bokobza, L., Bruneel, J. L., and Couzi, M., 2015. Raman Spectra of Carbon-based Materials (from Graphite to Carbon Black) and of some Silicone Composites. Carbon, 1(1), pp. 77-94. 25. Bokobza, L., and Zhang, J., 2012. Raman Spectroscopic Characterization of Multi-Walled Carbon Nanotubes and Composites. Express Polymer Letters, 6(7), pp. 601-608. 26. Bullen, T. D., 2012. Stable Isotopes of Transition and Post-Transition Metals as Tracers in Environmental Studies. In Handbook of Environmental Isotope Geochemistry, pp. 177-203. New York: Springer, Berlin, Heidelbery. 27. Cao, Q., Yu, Q., Connell, D. W., and Yu, G., 2013. Titania/Carbon Nanotube Composite (TiO2/CNTs) and its Application for Removal of Organic Pollutants. Clean Technologies and Environment Policy, 15(6), pp. 871-880. 28. Carraro, G., Sugrañez, R., Maccato, C., Gasparotto, A., Barreca, D., Sada, C., Cruz-Yusta, M., and Sánchez, L., 2014. Nanostructured Iron (III) Oxides: From Design to Gas and Liquid Phase Photocatalytic Applications. Thin Solid Films, 564, pp. 121-127. 29. Chauhan, S. K., Shukla, A., Dutta, S., Gangopadhyay, S., and Bharadwaj, L. M., 2012. Carbon Nanotubes for Environmental Protection. Environmental Chemistry for a Sustainable World, pp. 83-98. 30. Chehimi, M. M., Pinson, J., Salmi, Z., 2014. Carbon Nanotubes: Surface Modification and Applications. Applied Surface Chemistry of Nanomaterials, pp. 1-64. 31. Chen, H., and Wang, L., 2014. Nanostructure Sensitization of Transition Metal Oxides for Visible Light Photocatalysis. Journal of Nanotechnology, 5(1), pp. 696-710. 32. Chen, L., Li, F., Ni, B., Xu, J., Fu, Z., and Lu, Y., 2012. Enhanced Visible Photocatalytic Activity of Hybrid Pt/α-Fe2O3 Nanorods. RSC Advances, 26, pp. 10057-10063. 33. Chen, L., Xie, H., and Yu, W., 2011. Functionalization Methods of Carbon Nanotubes and its Applications. Carbon Nanotubes Applications on Electron Devices, pp. 214-232. 34. Cheng, H., Wang, J., Zhao, Y., and Han, X., 2014. Effect of Phase Composition, Morphology and Specific Surface Area on the Photocatalytic Activity of TiO2 Nanomaterials. RSC Advances, 4(87), pp. 47031-47038. 35. Chiam, S. Y., Kumar, M. H., Bassi, P. S., Seng, H. L., Barber, J., and Wong, L. H., 2014. Improving the Efficiency of Hematite Nanorods for Photoelectrochemical Water Splitting by Doping with Manganese. ACS Applied Materials and Interfaces, 6(8), pp. 5852-5859. 36. Chirita, M., Grozescu, I., Taubert, L., Radulescu, H., Princz, E., Stefanovits-Banyai, E., Caramalau, C., Bulgariu, L., Macoveanu, M., and Muntean, C., 2009. Fe2O3 Nanoparticles, Physical Properties and their Photochemical and Photoelectrochemical Applications. Chemical Bull, 54(68), pp. 1-8. 37. Choi, J. Y., Alford, T. L., and Honsberg, C. B., 2014. Solvent Controlled Spin Coating Method for Large Scale Area Deposition of Two Dimensional Silica Nanosphere Assembled Layers. Langmuir, 30(20), pp. 5732-5738. 38. Choopun, S., Hongsith, N., and Wongrat, E., 2010. Metal Oxide Nanowires by Thermal Oxidation Reaction Technique. Nanowires, pp. 97-116. 39. Chui, H., Yan, X., Monasterio, M., and Xing, F., 2017. Effect of various Surfactant on the Dispersion of MWCNTs-OH in Aqueous Solution. Nanometarials, 7(9), pp. 1-14. 40. Collins, P. G., 2010. Defect and Disorder in Carbon Nanotubes. Oxford Handbook of Nanoscience and Technology: Structures, Properties and Characterization. Technique, 2(2), pp. 1-73. Oxford: Oxford University Press. 41. Crini, G., Lichtfouse, E., Wilson, L. D., and Morin-Crini, N., 2019. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environment Chemistry Letters, 17(1), pp. 195-213. 42. Das, R., Bee, S., Hamid, A., Ali, E., Ismail, A. F., Annuar, M. S. M., and Ramakrishna, S., 2014. Multifunctional Carbon Nanotubes (CNTs): A New Dimension in Environmental Remediation Multifunctional Carbon Nanotubes in Water Treatment: The Present, Past and Future. Advanced Materials Research, 832, pp. 328-332. 43. Das, R., and Chanda, A., 2016. Fabrication and Properties of Spin Coated Polymer Films. In Nano-Size Polymers, pp. 283-306. 44. Das, R., Hamid, S. B. A., Ali, M., Annuar, M. S. M., Samsudin, E. M. B., and Bagheri, S., 2015. Covalent Functionalization Scheme for Tailoring Solubility of Multi-Walled Carbon Nanotubes in Water and Acetone Solvent. Science of Advanced Materials, 7(12), pp. 2726-2737. 45. Deng, Y., and Zhao, R., 2015. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Report, 1(3), pp. 167-176. 46. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R., 2010. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nanoletters, 10(3), pp. 751-758. 47. Domracheva, N., 2018. Multifunctional Properties of γ-Fe2O3 Nanoparticles Encapsulated into Liquid-Crystalline Poly (propylene imine) Dendrimer. Novel Magnetic Nanostructures, pp. 97-125. India: Elsevier 48. Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., Liu, M., Sun, J., and Sun, J., 2015. Recent Developments in Heterogeneous Photocatalytic Water Treatment using Visible Light Responsive Photocatalysts: A Review. RCS Advances, 5(19), pp. 14610-14630. 49. Dontsova, T. A., Nahirniak, S, V., and Astrelin, I. M., 2019. Metal Oxide Nanomaterials and Nanocomposites of Ecological Purpose. Journal of Nanomaterials, 2019, pp. 1-31. 50. Dutta, A. K., Maji, S. K., and Adhikary, B., 2014. γ-Fe2O3 Nanoparticle: An Easily Recoverable Effective Photocatalyst for the Degradation of Rose Bengal and Methylene Blue Dyes in the Waste Water Treatment Plant. Materials Research Bulletin, 49, pp. 28-34. 51. Einarsrud, M. A., and Grande, T., 2014. 1D Oxide Nanostructure from Chemical Solutions. Chemical Society Review, 43(7), pp. 2187-2199. 52. Fard, G. C., Mirjalili, M., and Najafi, F., 2018. Preparation of Nano-Cellulose/α-Fe2O3 Hybrid Nanofiber for the Cationic Dyes Removal: Optimization Characterization, Kinetic, Isotherm and Error Analysis. Bulgarian Chemical Communications, 50, pp. 251-261. 53. Fatemi S. M., and Foroutan, M., 2015. Study of Dispersion of Carbon Nanotubes by Triton X-100 Surfactant using Molecular Dynamics Simulation. Journal of the Iranian Chemical Society, 12(11), pp. 1905-1913. 54. Feitoza, N. C., Gonc, T. D., Mesquita, J. J., Menegucci, J. S., Santos, M. M. S., Chaker, J. A., Cunha, R. B., Anderson, M. M., Rubim, J.C., and Sousa, M. H., 2014. Fabrication of Glycine-Functionalized Maghemite Nanoparticles for Magnetic Removal of Copper from Wastewater. Journal of Hazardous Materials, 264, pp. 153-160. 55. Frank, S., Frank, S., Poncharal, P., Wang, Z. L., and Heer, W. A. De, 1998. Carbon Nanotube Quantum Resistors. Science, 280(5370), pp. 1744-1746. 56. Fu, L., and Yu, A. M., 2014. Carbon Nanotubes based Thin Films: Fabrication, Characterization and Applications. Review on Advances Material Science, 36(1), pp. 40-61. 57. Fu, Q., and Liu, J., 2005. Effect of Ionic Surfactant Adsorption on Single-Walled Carbon Nanotube Thin Film Devices in Aqueous Solutions. Langmuir, 21(4), pp. 1162-1165. 58. Gadipelli, S., and Guo, Z. X., 2015. Graphene-based Materials: Synthesis and Gas Adsorption, Storage and Separation. Materials Science, 69, pp. 1-60. 59. Gentile, A., Ruffino, F., and Grimaldi, M., 2016. Complex-Morphology Metal-based Nanostructures: Fabrication, Characterization and Applications. Nanomaterials, 6(110), pp. 1-33. 60. Goyanes, S., Rubiolo, G. R., Salazar, A., Jimeno, A., Corcuera, M. A., and Mondragon, I., 2007. Carboxylation Treatment of Multiwalled Carbon Nanotubes Monitored by Infrared and Ultraviolet Spectroscopies and Scanning Probe Microscopy. Diamond and Related Materials, 16(2), pp. 412-417. 61. Grigorescu, S., Lee, C., Lee, K., Albu, S., Paramasivam, I., Demetrescu, I., and Schmuki, P., 2012. Thermal Air Oxidation of Fe: Rapid Hematite Nanowire Growth and Photoelectrochemical Water Splitting Performance. Electrochemistry Communications, 23, pp. 59-62. 62. Guo, L., Chen, F., Fan, X., Cai, W., and Zhang, J., 2010. S-doped α-Fe2O3 as a Highly Active Heterogeneous Fenton like Catalyst towards the Degradation of Acid Orange 7 and Phenol. Applied Catalysis B, Environmental, 96(1-2), pp. 162-168. 63. Gupta, N., Gupta, S. M., and Sharma, S. K., 2019. Carbon Nanotubes: Synthesis, Properties and Engineering Applications. Carbon Letters, pp. 1-29. 64. Gupta, V, K., and Saleh, T. A., 2011. Synthesis of Carbon Nanotube-Metal Oxides Composites: Adsorption and Photodegradation. Carbon Nanotubes from Research to Application, pp. 295-312. 65. Hasany, S, F., Ahmed, I., Rajan, J., and Rehman, A., 2012. Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles. Nanoscience and Nanotechnology, 2(6), pp. 148-158. 66. Harun, W. S. W., Asri, R. I. M., Alias, J., Zulkifli, F. H., Kadirgama, K., Ghani, S. A. C., and Shariffuddin, J. H. M., 2018. A Comprehensive Review of Hydroxyapatite based Coating Adhension on Metallic Biomaterials. Ceramic International, 44(2), pp. 1250-1268. 67. He, B., Xu, G., Zhou, M., and Yuan, Q., 2016. Effect of Oxidation Temperature on the Oxidation Process of Silicon containing Steel. Metals, 6(6), pp. 1-9. 68. He, L., Jing, L., Luan, Y., Wang, L., and Fu, H., 2014. Enhanced Visible Activities of α-Fe2O3 by Coupling N-doped Graphene and Mechanism Insight. ACS Catalysis, 4(3), pp. 990-998. 69. Herlem, G., Picaud, F., Girardet, C., and Micheau, O., 2019. Carbon Nanotubes: Synthesis, Characterization and Applications in Drug-Delivery Systems. In Nanocarriers for Drug Delivery (2nd ed.), pp. 469-529. Oxford: Elsevier Micro and Nano Technologies Publication. 70. Hiralal, P., Saremi-Yarahmadi, S., Bayer, B. C., Wang, H., Hofmann, S., Upul Wijayantha, K. G., and Amaratunga, G. A. J., 2011. Nanostructured Hematite Photoelectrochemical Electrodes Prepared by the Low Temperature Thermal Oxidation of Iron. Solar Energy Materials and Solar Cells, 95(7), pp. 1819-1825. 71. Hiralal, P., Unalan, H. E., Wijayantha, K. G. U., Kursumovic, A., Jefferson, D., and Amaratunga, G. A. J., 2008. Growth and Process Conditions of Aligned and Patternable Films of Iron (III) Oxide Nanowires by Thermal Oxidation of Iron. Nanotechnology, 19(45), pp. 1-7. 72. Hirano, A., Gao, W., He, X., and Kono, J., 2017. Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions. Nanoscale Research Letters, 12(1), pp. 1-10. 73. Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemannt, D.W., 1995. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), pp. 69-96. 74. Huang, L., Zhang, R., Sun, X., and Cheng, X., 2014. Synthesis and Characterization of G-C3N4/α-Fe2O3 Composite with Enhanced Photocatalytic Activity. In Key Engineering Materials, 575-576, pp. 225-228. Switzerland: Solid State Phenomena Publication. 75. Huang, Y., Duan, X., Wei, Q., and Lieber, C. M., 2001. Directed Assembly of One Dimensional Nanostructures into Functional Networks. Science, 291(5504), pp. 630-633. 76. Huang, Y. F., Ang, S. Y., Lee, K. M., and Lee, T. S., 2015. Quality of Water Resources in Malaysia. Water Quality, pp. 65-94. 77. Huang, Y. Y., and Terentjey, E. M., 2012. Dispersion of Carbon Nanotubes: Mixing, Sonication and Composite Properties. Polymer, 4(1), pp. 275-295. 78. Hynes, N. R. J., Sankaranarayanan, R., Kathiresan, M., Senthemaraikannan, P., Khan, A., Asiri, A. M., and Khan, I., 2019. Synthesis, Properties and Characterization of Carbon Nanotube-Reinforced Metal Matrix Composites. In Nanocarbon and Composites, pp. 805-830. Cambridge: Elsevier Preparation, Properties ans Applications Publication. 79. Ibhadon, A. O., and Fitzpatrick, P., 2013. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalyst, 3(1), pp. 189-218. 80. Ismail, S., Saad, N. S., and Abd Razak, J., 2016. Nanostructured Hematite Prepared by Thermal Oxidation of Iron. Engineering Materials, 694, pp. 208-212. 81. Jamal-Omidi, M., Shayan-Mehr, M., 2019. Improving the Dispersion of SWCNT in Epoxy Resin through a Simple Multi-Stage Method. Journal of King Saud University Science, 31(2), pp. 202-208. 82. Jean, I. Y., Chang, D. W., Kumar, N. A., and Baek, J. B., 2011. Functionalization of Carbon Nanotube. Carbon Nanotubes-Polymer Nanocomposites, pp. 91-110. 83. Jeon, I. Y., Chang, D. W., Kumar, N. A., and Baek, J. B., 2011. Functionalization of Carbon Nanotubes. Carbon Nanotubes-Polymer Nanotubes, pp. 91-104. 84. Jiang, H., Ma, H., Jin, Y., Wang, L., Gao, F., and Lu, Q., 2016. Hybrid α-Fe2O3@Ni(OH)2 Nanosheet Composite for High Rate Performance Supercapacitor Electrode. Scientific Reports, 6, pp. 1-10. 85. Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., and Yin, H., 2013. Carbon Nanotubes/TiO2 Nanotubes Composite Photocatalysts for Efficient Degradation of Methyl Orange Dye. Particuology, 11(6), pp. 737-742. 86. Kamil, A. M., Hussein, F. H., Halbus, A. F., and Bahnemann, D. W., 2014. Preparation, Chracterization and Photocatalytic Applications of MWCNTs/TiO2 Composite. Journal of Photoenergy, 2014, pp. 1-8. 87. Kang, J., Kuang, Q., Xie, Z., and Zheng, L., 2011. Fabrication of the SnO2/α-Fe2O3 Hierarchical Heterostructure and Its Enhanced Photocatalytic Property. Journal of Physical Chemistry C, 115(16), pp. 7874-7879. 88. Kanoun, O., Muller, C., Benchirouf, A., Sanli, A., Dinh, T., Al-Hamry, A., Bu, L., Gerlach, C., and Bouhamed, A., 2014. Flexible Carbon Nanotubes Films for High Performance Strain Sensors. Sensors, 14(6), pp. 10042-10071. 89. Karimi-Maleh, H., Beheshti, A., Karimi, F., Shabani-Nooshabadi, M., Ganjali, M. R., and Rezapour, M., 2018. Sensing and Monitoring. In Carbon Nanotubes for Clean Water, pp. 171-186. Iran: Springer Cham Publication. 90. Katz, M. J., Riha, S. C., Jeong, N. C., Martinson, A. B. F., Farha, O. K., and Hupp, J. T., 2012. Toward Solar Fuels: Water Splitting with Sunlight and Rust? Coordination Chemistry Reviews, 256(21-22), pp. 2521-2529. 91. Khalil, R. A., and Saadoon, F. A., 2015. Effect of Presence of Benzene Ring in Surfactant Hydrophobic Chain on the Transformation towards One Dimensional Aggregate. Journal of Saudi Chemical Society, 19(4), pp. 423-428. 92. Khan, A. A. P., Khan, A., Alam, M. M., Asiri, A. M., Uddin, J., and Rahman, M. M., 2019. SDBS-Functionalized MWCNTs/Poly (O-toluidine) Nanowires Modified Glassy Carbon Electrode as a Selective Sensing Platform for Ce3+ in Real Samples. Journal of Molecular Liquids, 279, pp. 392-399. 93. Khan, G., Kim, Y. K., Choi, S. K., Han, D. S., Abdel-Wahab, A., and Park, H., 2013. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2. Bulletin of the Korean Chemical Society, 34(4), pp. 1137-1144. 94. Khan, W., Sharma, R., and Saini, P., 2016. Carbon Nanotubes-based Polymer Composites: Synthesis, Properties and Applications. Carbon Nanotubes-Current Progress of their Polymer Composites, pp. 1-45. 95. Khodadadi, M. M., Habibi, Y, A., and Gholami, M. R., 2009. Solvatochromic Parameters for Binary Mixtures of an Ionic Liquid with Various Protic Molecular Solvents. RCS Advances, 140(3), pp. 329-334. 96. Kim, G. J., Lee, S. M.., Hong, S. C., and Kim, S. S., 2018a. Active Oxygen Species Adsorbed on the Catalyst Surface and its Effect on Formaldehyde Oxidation over Pt/TiO2 Catalyst at Room Temperature: Role of the Pt Valence State on this Reaction. RSC Advances, 8(7), pp. 3626-3636. 97. Kim, J. H., Hwang, J. Y., Hwang, H. R., Kim, H. S., Lee, J. H., Seo, J. W., Shin, U. S., and Lee, S. H., 2018b. Simple and Cost Effective Method of Highly Conductive and Elastic Carbon Nanotubes/Polydimenthylsiloxane Composite for Wearable Electronics. Scientific Reports, 8(1), pp. 1-11. 98. Kim, J. Y., Jun, H., Hong, S. J., Kim, H. G., and Lee, J. S., 2011. Charge Transfer in Iron Oxide Photoanode Modified with Carbon Nanotubes for Photoelectrochemical Water Oxidation: An Electrochemical Impedance Study. International Journal of Hydrogen Energy, 36(16), pp. 9462-9468. 99. Krajewski, M., Brzozka, K., Lin, W. S., Lin, H., Tokarczyk, M., Borysiuk, J., Kowalski, G., and Wasik, D., 2016. High Temperature Oxidation of Iron-Iron Oxide Core-Shell Nanowires Composed of Iron Nanoparticles. Physical Chemistry Chemical Physics, 18(5), pp. 3900-3909. 100. Kumanek, B., and Janas, D., 2019. Thermal Conductivity of Carbon Nanotubes Networks: A Review. Journal of Materials Science, 54(10), pp. 7397-7427. 101. Kumar, R., 2014. Application of Carbon Nanotubes in Heavy Metals Remediation. Critical Reviews in Environmental and Technology, 44(9), pp. 1000-1035. 102. Kumar, S. R., Raja, M. M., Mangalaraj, D., Viswanathan, C., and Ponpandian, N., 2013. Surfactant Free Solvothermal Synthesis of Monodispersed 3D Hierarchical Fe3O4 Microspheres. Materials Letters, 110, pp. 98-101. 103. Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S., and Gadri, A., 2018. Photocatalytic Degradation of Methylene Blue Dye by Iron Oxide (α-Fe2O3) Nanoparticle under Visible Irradiation. Journal of Materials Science: Materials in Electronics, 29(10), pp. 8142-8152. 104. Lau, Y. Y., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., and Ong, S. A., 2015. Degradation of Cationic and Anionic Dyes in Coagulation Flocculation Process using Bi-Functionalized Silica Hybrid with Aluminium Ferric as Auxiliary Agent. RSC Advances, 5(43), pp. 34206-34215. 105. Lee, G. W., Kim, J., Yoon, J., Bae, J. S., Shin, B. C., Kim, I. S., Oh, W., and Ree, M., 2008. Structural Characterization of Carboxylated Multi-Walled Carbon Nanotubes. Thin Solid Films, 516(17), pp. 5781-5784. 106. Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., and Meunier, V., 2011. Evaluating the Characteristics of Multi-Walled Carbon Nanotubes. Carbon, 49(8), pp. 2581-2602. 107. Li, L., Chu, Y., Liu, Y., and Dong, L., 2007. Template Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres. Journal of Physical Chemistry C, 111(5), pp. 2123-2127. 108. Li, W, 2013. Photocatalytic of Oxide Semiconductors. Journal of the Australian Ceramic Society, 49(2), pp. 41-46. 109. Li, W., Du, D., Yan, T., Kong, D., You, J., and Li, D., 2015. Relationship between Surface Hydroxyl Group and Liquid Phase Photocatalytic Activity of Titanium Dioxide. Journal of Colloid and Interface Science, 444, pp. 42-48. 110. Li, X., Yu, X., He, J., and Xu, Z., 2009. Controllable Fabrication, Growth Mechanisms and Photocatalytic Properties of Hematite Hollow Spindles. Journal of Physical Chemistry Carbon, 113(7), pp. 2837-2845. 111. Li, X. L., Wang, C. X., and Yang, G. W., 2014. Thermodynamic Theory of Growth of Nanostructures. Materials Science, 64, pp. 121-199. 112. Lin, A. M. R., Dutton, R. W., Antoniadis, D. A., and Tiller, W. A., 1981. The Growth of Oxidation Stacking Faults and the Point Defect Generation at Si-SiO Interface during Thermal Oxidation of Silicon. Journal of the Electrochemical Society, 128(5), pp. 1121-1130. 113. Lisjak, D., and Mertelj, A., 2018. Anisotropic Magnetic Nanoparticles: A Review of their Properties, Synthesis and Potential Applications. Progress in Materials Science, 95, pp. 286-328. 114. Lui, G., Liao, J. Y., Duan, A., Zhang, Z., Fowler, M., and Yu, A., 2013. Graphene Wrapped Hierarchical TiO2 Nanoflower Composites with Enhanced Photocatalytic Performance. Journal of Materials Chemistry A, 1(39), pp. 12255-12262. 115. Liu, Y., Liao, L., Pan, C., Li, J., Dai, Y., and Chen, W., 2008. Modulated Structure Assisted Growth and Properties of Fe3O4 Nanoneedle Films using a Thermal Oxidation Process in the Air. Journal of Physical Chemistry C, 112(4), pp. 902-910. 116. Lopez-Tejedor, D., Benavente, R., and Palomo, J. M., 2018. Iron Nanostructured Catalyst: Design and Applications. Catalysis Science and Technology, 8(7), pp. 1754-1776. 117. Lu, H. M., and Meng, X. K., 2010. Morin Temperature and Neel Temperature of Hematite Nanocrystals. Journal of Physical Chemistry C, 114 (49), pp. 21291-21295. 118. Ma, L., Hart, A. H., Ozden, S., Vajtai, R., and Ajayan, P. M., 2014. Spiers Memorial Lecture. RCS Advances, 173, pp. 9-46. 119. Ma, P. C., Kim, J., and Tang, B. Z., 2006. Functionalization of Carbon Nanotubes using a Silane Coupling Agent. Carbon, 44(15), pp. 3232-3238. 120. Madani, S. Y., Mandel, A., and Seifalian, A. M., 2013. A Concise Review of Carbon Nanotubes Toxicology. Nano Review, 4(1), pp. 1-14. 121. Maldonado, M. I., Blanco, J., Gernjak, W., Malato, S., and Ferna, P., 2009. Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catalysis, 147(1), pp. 1-59. 122. Mallakpour, S., and Soltanian, S., 2016. Surface Functionalization of Carbon Nanotubes: Fabrication and Application. RCS Advances, 6(111), pp. 109916-109935. 123. Mansour, A. M., 2015. Photocatalytic Degradation of Methylene Blue with Hematite Nanoparticles Synthesized by Thermal Decomposition of Fluoroquinolones Oxalato-Iron (III) Complexes. RSC Advances, 5(76), pp. 62052-62061. 124. Mehedi, H., Ravaux, J., Yazda, K., Michael, T., Tahir, S., Odorico, M., Podor , R., and Jourdan, V., 2016. Increased Chemical Reactivity of Single-Walled Carbon Nanotubes on Oxide Substrate: In Situ Imaging and Effect of Electron and Laser Irradiations. Nano Research, 9(2), pp. 517-529. 125. Mei, B., Han, K., and Mul, G., 2018. Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor Supported Nanoparticles during Overall Water Splitting. ACS Catalysis, 8(10), pp. 9154-9164. 126. Mendoza-Cachu, D., Mercado-Zuniga, C., and Rosas, G., 2017. Surfactant Assisted Stabilization of Carbon Nanotubes Synthesized by a Spray Pyrolysis Method. Advances in Condensed Matter Physics, 2007, pp. 1-7. 127. Mirershadi, S., Mortazavi, S. Z., Reyhani, A., Moniri, N., and Novinrooz, A. J., 2009. Effective Condition for Purification of Multi-Walled Carbon Nanotubes by Nitric Acid. RCS Advances, 39(4), pp. 204-208. 128. Mishra, M., and Chun, D. M., 2015. α-Fe2O3 as a Photocatalytic Material: A Review. Applied Catalysis A: General, 498, pp. 126-141. 129. Mohd Adnan, M. A., Julkapli, N. M., and Abd Hamid, S. B., 2016. Review on ZnO Hybrid Photocatalyst: Impact on Photocatalytic Activities of Water Pollutant Degradation. Reviews in Inorganic Chemistry, 36(2), pp. 77-104. 130. Moma, J., and Baloyi, J., 2018. Modified Titanium Dioxide for Photocatalytic Applications. Photocatalyst Applications and Attributes, pp. 37-56. 131. Mondal, K., and Sharma, A., 2014. Photocatalytic Oxidation of Pollutant Dyes in Wastewater by TiO2 and ZnO Nano-Materials - A Mini Review. Nanoscience and Technology for Mankind: The Academy of Sciences India (NASI): Allahabad, India, pp. 36-72. 132. Mohapatra, M., and Anand, S., 2010. Synthesis and Applications of Nano-Structured Iron Oxides/Hydroxides. International Journal of Engineering, Science and Technology, 2(8), pp. 127-146. 133. Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D., and Glasscock, J. A., 2006a. Efficiency of Solar Water Splitting using Semiconductor Electrodes. International Journal of Hydrogen Energy, 31(14), pp. 1999-2017. 134. Murphy, H., Papakonstantinou, P., and Okpalugo, T. I. T., 2006b. Raman Study of Multi-Walled Carbon Nanotubes Functionalized with Oxygen Groups. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 24(2), pp. 715-720. 135. Nasibulin, A. G., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P. R., Shandakov, S. D., Nasibulina, L. I., Jani, S., and Kauppinen, E. I., 2009. Simple and Rapid Synthesis of α-Fe2O3 Nanowires under Ambient Conditions. Nano Research, 2(5), pp. 373-379. 136. Nasir, S., Hussein, M. Z., Zainal, Z., Yusof, N. A., Zobir, S. A. M., and Alibe, I. M., 2019. Potential Valorization of by Product Materials from Oil Palm: A Review of Alternative and Sustainable Carbon Sources for Carbon-based Nanomaterials Synthesis. BioResources, 14(1), pp. 2352-2388. 137. Nasir, S., Hussein, M., Zainal, Z., and Yusof, N., 2018. Carbon-based Nanomaterials/Allotropes: A Glimpse of their Synthesis, Properties and Some Applications. Materials, 11(295), pp. 1-24. 138. Ng, H. W., and Gan, Z., 2005. A Finite Element Analysis Technique for Predicting As-Sprayed Residual Stresses Generated by the Plasma Spray Coating Process. Finite Elements in Analysis and Design, 41(13), pp. 1235-1254. 139. Nudrat, S., Archana, Y., and Hasan, S. S., 2018. A Review Study of Advances in the Science and Technology of Carbon Nanotubes. Journal of Physics, 5(3), pp. 1-6. 140. Okoro, A. M., Machaka, R., Lephuthing, S. S., Awotunde, M. A., Oke, S. R., Falodun, O. E., and Olubambi, P. A., 2019. Dispersion Characteristics, Interfacial Bonding and Nanostructural Evolution of MWCNTs in Ti6A14V Powder Prepared by Shift Speed Ball Milling Technique. Journal of Alloys and Compounds, 785, pp. 356-366. 141. Oturan, M. A., and Aaron, J. J., 2014. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. Environmental Science and Technology, 44(23), pp. 2577-2641. 142. Pan, B., and Xing, B., 2008. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science and Technology, 42(24), pp. 9005-9013. 143. Pan, J., Shen, H., and Mathur, S., 2012. One Dimensional SnO2 Nanostructures: Synthesis and Applications. Journal of Nanotechnology, 2012, pp. 1-12. 144. Pang, Y. L., Lim, S., Ong, H. C., and Chong, W. T., 2016. Research Progress on Iron Oxide-based Magnetic Materials: Synthesis Technique and Photocatalytic Applications. Ceramic International, 42(1), pp. 9-34. 145. Pauliukaite, R., Murnaghan, K., Doherty, A. P., and Brett, C. M., 2009. A Strategy for Immobilistion of Carbon Nanotubes Homogenised in Room Temperature Ionic Liquids on Carbon Electrodes. Journal of Electroanalytical Chemistry, 633(1), pp. 106-112. 146. Pavia, D., Lampman, G., Kriz, G., and Vyvyan, J., 2008. Introduction to Spectroscopy, 5th ed., New York: Cengage Learning. 147. Peng, L., Xie, T., Lu, Y., Fan, H., and Wang, D., 2010. Synthesis, Photoelectric Properties and Photocatalytic Activity of the Fe2O3/TiO2 Heterogeneous Photocatalysts W. Physical Chemistry Chemical Physics, 12(28), pp. 8033-8041. 148. Perrich, J. R., 2018. Activated Carbon Adsorption for Wastewater treatment, 2nd ed., New York: CRC press. 149. Pradhan, G. K., and Parida, K. M., 2011. Fabrication, Growth Mechanism and Characterization of α-Fe2O3 Nanorods. ACS Applied Materials and Interfaces, 3(2), pp. 317-323. 150. Pescaglini, A., and Iacopino, D., 2015. Metal Nanoparticle Semiconductor Nanowires Hybrid Nanostructure for Plasmon Enhanced Optoelectronic and Sensing. Journal of Materials Chemistry C, 3(45), pp. 11785-11800. 151. Pradhan, G. K., Padhi, D. K., and Parida, K. M., 2013a. Fabrication of α-Fe2O3 Nanorod/RGO Composite: A Novel Hybrid Photocatalyst for Phenol Degradation. ACS Applied Materials and Interfaces, 5(18), pp. 9101-9110. 152. Pradhan, G. K., Sahu, N., and Parida, K. M., 2013b. Fabrication of S, N Co-Doped α-Fe2O3 Nanostructures: Effect of Doping, OH Radical Formation, Surface Area, [110] Plane and Particle Size on the Photocatalytic Activity. RSC Advances, 3(21), pp. 7912-7920. 153. Popov, I. A., Jimenez-Izal, E., Alexandrova, A. N., and Boldyrev, A. I., 2018. Multicenter Bonding Effects on Oxygen Vacancy in the Bulk and on the Surface of MgO. Journal of Physics Chemistry, 122(22), pp. 11933-11937. 154. Purohit, R., Purohit, K., Rana, S., Rana, R. S., and Patel, V., 2014. Carbon Nanotubes and their Growth Methods. Materials Science, 6, pp. 716-728. 155. Qin, W., Yang, C., Yi, R., and Gao, G., 2011. Hydrothermal Synthesis and Characterization of Single Crystalline α-Fe2O3 Nanocubes. Journal of Nanomaterials, 2011, pp. 1-5. 156. Rackauskas, S., 2011. Non-Catalytic Growth of Metal Oxide Nanowires: Properties and Growth Mechanism Investigations. Applied Physics, pp. 1-55. 157. Rahman, M. M., Younes, H., Subramanian, N., Ghaferi, A. A., 2014. Optimizing the Dispersion Conditions of SWCNTs in Aqueous Solution of Surfactants and Organic Solvents. Journal of Nanomaterials, 2014, pp. 1-11. 158. Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A., Mian, S., and Ali, G., 2019. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. Carbon, 5(1), pp. 1-31. 159. Rai, S., Ikram, A., Sahai, S., Dass, S., Shrivastav, R., and Satsangi, V. R., 2015. Photoactivity of MWCNTs Modified α-Fe2O3 Photoelectrode towards Efficient Solar Water Splitting. Renewable Energy, 83, pp. 447-454. 160. Rao, B. G., Mukherjee, D., and Reddy, B. M., 2017. Novel Approaches for Preparation of Nanoparticles. Nanostructures for Novel Therapy, pp. 1-36. 161. Rath, M. D., 2016. Carbon Nanotubes and its Applications in Medical Science: A Review. Science Journal of Physics, 2016, pp. 1-4. 162. Raut, H. K., Ganesh, V. A., Nair, A. S., and Ramakrishna, S., 2011. Anti-Reflective Coatings: A Critical in Depth Review. Energy and Environmental Science, 4(10), pp. 3779-3804. 163. Ray, Y. L., Lim, S., Ong, H. C., and Chong, W. T., 2016. Research Progress on Iron Oxide-based Magnetic Materials: Synthesis Technique and Photocatalytic Applications. Ceramics International, 42(1), pp. 9-34. 164. Ren, S., Chen, C., Zhou, Y., Dong, Q., and Ding, H., 2017. The α-Fe2O3/g-C3N4 Composite as an Efficient Heterogeneous Catalyst with Combined Fenton and Photocatalytic Effects. Research on Chemical Intermediates, 43(5), pp. 3307-3323. 165. Rojas, J. A., Ardila-Rodriguez, L. A., Diniz, M. F., Goncalves, M., Ribeiro, B., and Rezende, M. C., 2019. Optimization of Triton X-100 Removal and Ultrasonic Probe Parameters in the Preparation of Multi-Walled Carbon Nanotube Buckypaper. Materials and Design, 166, pp. 1-10. 166. Safari, J., and Zarnegar, Z., 2014. Advanced Drug Delivery Systems: Nanotechnology of Health Design. Journal of Saudi Chemical Society, 18(2), pp. 85-99. 167. Saha, S., Bhunia, A. K., 2013. Synthesis of Fe2O3 Nanoparticles and Study of its Structural and Optical Properties. Journal of Physics Sciences, 17, pp. 191-195. 168. Sahebian, S., Zebarjad, S. M., Vahdati Khaki, J., and Lazzeri, A., 2015. A Study on the Dependence of Structure of Multi-Walled Carbon Nanotubes on Acid Treatement. Journal of Nanostructure in Chemistry, 5(3), pp. 287-293. 169. Saleem, M., Durrani, S. M. A., Saheb, N., Al-Kuhaili, M. F., and Bakhtiari, I. A., 2014. The Effect of Annealing on Structural and Optical Properties of α-Fe2O3/CdS/α-Fe2O3 Multilayer Heterostructures. Applied Surface Science, 320, pp. 653-657. 170. Saleh, T. A., 2013. The Role of Carbon Nanotubes in Enhancement of Photocatalysis. RCS Advances, pp. 479-493. 171. Saleh, T. A., and Gupta, V. K., 2011. Functionalization of Tungsten Oxide into MWCNT and Its Application for Sunlight Induced Degradation of Rhodamine B. Journal of Colloid and Interface Science, 362(2), pp. 337-344. 172. Sarkar, D., Esqueda, I. S., and Kapadia, R., 2018. Nanowires Field Effect Transistors. Advanced Nanoelectronics: Post Silicon Materials and Devices, pp. 33-54. 173. Scarselli, M., Castrucci, P. and De Crescenzi, M., 2012. Electronic and Optoelectronic Nano-devices based on Carbon Nanotubes. Journal of Physics: Condensed Matter, 24(31), pp. 1-14. 174. Schroder, D. K., 2006. Semiconductor Material and Device Characterization. Technology and Engineering, 3rd ed., New York: John Wiley and sons. 175. Shao, T., 2010. Factors Influencing the Adsorption of Synthetic Organic Compounds by Carbon Nanotubes in Aquatic Environments. RCS Advances, pp. 1-15. 176. Sharma, R., Bisen, D. P., Shukla, U., and Sharma, B. G., 2012. X-Ray Diffraction: A Powerful Method of Characterizing Nanomaterials. Recent Research in the Science and Technology, 4(8), pp. 77-79. 177. Shih, P. H., and Wu, S., 2017. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short Circuit Diffusion Analysis. Nanomaterials, 7(88), pp. 1-24. 178. Shinde, S. S., Bansode, R. A., Bhosale, C. H., and Rajpure, K. Y., 2011. Physical Properties of Hematite α-Fe2O3 Thin Films: Application to Photoelectrochemical Solar Cells. Journal of Semiconductors, 32(1), pp. 1-8. 179. Show, B., Mukherjee, N., and Mondal, A., 2016. α-Fe2O3 Nanospheres: Facile Synthesis and Highly Efficient Photo-Degradation of Dyes and Surface Activation by Nano-Pt for Enhanced Methanol Sensing. RSC Advances, 6(79), pp. 75347-75358. 180. Silva, M. R., Coelho, M. A. Z., and Araujo, O. Q. F., 2018. Minimization of Phenol and Ammoniacal Nitrogen in Refinery Wastewater Employing Biological Treatment. RCS Advances, 1(2), pp. 33-37. 181. Singh, D. K., Iyer, P. K. and Giri, P. K., 2008. Functionalization of Carbon Nanotubes and Study of its Optical and Structural Properties. Nanotrends, 4, pp. 55-58. 182. Sireesha, M., Jagadeesh Babu, V., Kranthi Kiran, A. S., and Ramakrishna, S., 2018. A Review on Carbon Nanotubes in Biosensor Devices and their Applications in Medicine. Nanocomposites, 4(2), pp. 36-57. 183. Sivula, K., Formal, F. Le, and Gr, M., 2009. WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach. Chemistry of Materials, 21(4), pp. 2862-2867. 184. Song, L., and Zhang, S., 2009. Formation of α-Fe2O3/FeOOH Nanostructures with various Morphologies by a Hydrothermal Route and their Photocatalytic Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348(1-3), pp. 217-220. 185. Suber, L., Imperatori, P., Ausanio, G., Fabbri, F., Hofmeister, H., Stazione, M., and Fisiche, I. S., 2005. Synthesis, Morphology and Magnetic Characterization of Iron Oxide Nanowires and Nanotubes. Journal of Physical Chemistry B, 109(15), pp. 7103-7109. 186. Sun, G., Liu, Z., and Chen, G., 2010a. Dispersion of Pristine Multi-Walled Carbon Nanotubes in Common Organic Solvents. Nano, 5(02), pp. 103-109. 187. Sun, S., Wang, W., Zeng, S., Shang, M., and Zhang, L., 2010b. Preparation of Ordered Mesoporous Ag/WO3 and Its Highly Efficient Degradation of Acetaldehyde under Visible Light Irradiation. Journal of Hazardous Materials, 178(1-3), pp. 427-433. 188. Strano, M, S., Moore, V. C., Miller, M. K., Allen, M. J., Haroz, E. H., Kittrell, C., Hauge R. and Smalley, R. E., 2003. The Role of Surfactant Adsorption during Ultrasonication in the Dispersion of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 3(1-2), pp. 81-86. 189. Tanveer, M., and Tezcanli, G, G., 2013. Solar Assisted Photo Degradation of Wastewater by Compound Parabolic Collectors: Review of Design and Operational Parameters. Renewable and Sustainable Energy Reviews, 24, pp. 534-543. 190. Teja, A. S., and Koh, P., 2009. Synthesis, Properties and Applications of Magnetic Iron Oxide Nanoparticles. RCS Advances, 55(1-2), pp. 22-45. 191. Thandu, M., Comuzzi, C., and Goi, D., 2015. Phototreatment of Water by Organic Photosensitizer and Comparison with Inorganic Semiconductor. International Journal of Photoenergy, 2015, pp. 1-23. 192. Tian, Q., Wu, W., Sun, L., Yang, S., Lei, M., Zhou, J., Xiao, X., Ren, F., Jiang, C., and Roy, V. A. L., 2014. Tube-like Ternary α-Fe2O3@SnO2@Cu2O Sandwich Heterostructures: Synthesis and Enhanced Photocatalytic Properties. ACS Applied Materials and Interfaces, 6(15), pp. 13088-13097. 193. Tiwari, J. N., Tiwari, R. N., and Kim, K. S., 2012. Zero Dimensional, One Dimensional, Two Dimensional and Three Dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices. Tiwari, Jitendra, 57(4), pp. 724-803. 194. Tuncel, D., 2011. Non-Covalent Interactions between Carbon Nanotubes and Conjugated Polymers. Nanoscale, 3(9), pp. 3545-3554. 195. Tyona, M. D., 2013. A Theoritical Study on Spin Coating Technique. Advances in Materials Research, 2(4), pp. 195-208. 196. Uberuaga, B. P., Vernon, L. J., Martinez, E., and Voter, A. F., 2015. The Relationship between Grain Boundary Structure, Defect Mobility and Grain Boundary Sink Efficiency. Scientific Reports, 5, pp. 1-9. 197. Umar, A., 2011. Quantum Confinement: An Ultimate Physics of Nanostructures. Semiconductor Nanotechnology, 5, pp. 1-67. 198. Unutulmazsoy, Y., Merkle, R., Fischer, D., Mannhart, J., and Maier, J., 2017. The Oxidation Kinetics of Thin Nickel Films between 250 °C and 500 °C. Physical Chemistry Chemical Physics, 19(13), pp. 9045-9052. 199. Varshney, K., 2014. Carbon Nanotubes: A Review on Synthesis, Properties and Applications. International Journal of Engineering Research, 2(4), pp. 660-677. 200. Vincent, T., Gross, M., Dotan, H., and Rothschild, A., 2011. Thermally Oxidized Iron Oxide Nanoarchitectures for Hydrogen Production by Solar-Induced Water Splitting. International Journal of Hydrogen Energy, 37(9), pp. 8102-8109. 201. Wang, D., Yang, P., and Zhu, Y., 2014. Growth of Fe3O4 Nanoparticles with Tunable Sizes and Morphologies using Organic Amine. Materials Research Bulletin, 49, pp. 514-520. 202. Wang, J., 2015. Effect of Water on the Critical Surface Tension of Coal. In 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 20150), pp. 1912-1916. New York Publisher. 203. Wang, T., Li, Y., Wang, L., Liu, C., Geng, S., Jia, X., Yang, F., Zhang, L., Liu, L., You, B., Ren, X., and Yang, H., 2015. Synthesis of Graphene/α-Fe2O3 Composites with Excellent Electromagnetic Wave Absorption Properties. RSC Advances, 5(74), pp. 60114-60120. 204. Wang, W., Serp, P., Kalck, P., and Faria, J. L., 2005. Visible Light Photodegradation of Phenol on MWNTs-TiO2 Composite Catalysts Prepared by a Modified Sol Gel Method. Journal of Molecular Catalysis A: Chemical, 235(1-2), pp. 194-199. 205. Walter, D., 2013. Primary Particles Agglomerates Aggregates. Nanomaterials, pp. 9-24. 206. Watanabe, Y., Yoshida, C., Atsumi, K., Yamada, M., and Fukumoto, M., 2015. Influence of Substrate Temperature on Adhesion Strength of Cold Sprayed Coatings. Journal of Thermal Spray Technology, 24(1-2), pp. 86-91. 207. Wepasnick, K. A., Smith, B. A., Schrote, K. E., Wilson, H. K., Diegelmann, S. R., and Fairbrother, D. H., 2011. Surface and Structural Characterization of Multi-Walled Carbon Nanotubes following Different Oxidative Treatments. Carbon, 49(1), pp. 24-36. 208. Wheeler, D. A., Wang, G., Ling, Y., Li, Y., and Zhang, J. Z., 2012. Nanostructured Hematite: Synthesis, Characterization, Charge Carrier Dynamics and Photoelectrochemical Properties. Energy and Environmental Science, 5(5), pp. 6682-6702. 209. Williams, M. G., Gao, F., BenDhiab, I., and Teplyakov, A., 2016. Carbon Nanotubes Covalently Attached to Functionalized Surfaces Directly through the Carbon Cage. Langmuir, 33(5), pp. 1121-1131. 210. Woan, B. K., Pyrgiotakis, G., and Sigmund, W., 2009. Photocatalytic Carbon Nanotube- TiO2 Composites. Advanced Materials, 21(21), pp. 2233-2239. 211. Wright, J. T., Carbaugh, D. J., Haggerty, M. E., Richard, A. L., Ingram, D. C., Kaya, S., and Rahman, F., 2016. Thermal Oxidation of Silicon in a Residual Oxygen Atmosphere the RESOX Process for Self Limiting Growth of Thin Silicon Dioxide Films. Semiconductor Science and Technology, 31(10), pp. 1-8. 212. Xiang, Y., Kong, L., Xie, P., Xu, T., Wang, J., and Li, X., 2014. Carbon Nanotubes and Activated Carbons Supported Catalysts for Phenol in Situ Hydrogenation: Hydrophobic/Hydrophilic Effect. Industrial and Engineering Chemistry Research, 53(6), pp. 2197-2203. 213. Xiao, Z., Li, J., Zhong, J., Hu, W., Zeng, J., Huang, S., Lu, X., He, J., and Li, M., 2014. Enhanced Photocatalytic Decolorization of Methyl Orange by Gallium-doped α-Fe2O3. Materials Science in Semiconductor Processing, 24, pp. 104-109. 214. Xu, J., and Zhu, Y., 2011. α-Fe2O3 Hierarchically Hollow Microspheres Self Assembled with Nanosheets: Surfactant Free Solvothermal Synthesis, Magnetic and Photocatalytic Properties. Material Science, 13(16), pp. 5162-5169. 215. Xu, P., Ming, G., Lian, D., Ling, C., Hu, S., and Hua, M., 2012a. Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review. Science of the Total Environment, 424, pp. 1-10. 216. Xu, T., and Yang, J., 2012b. Effects of Surface Modification of MWCNT on the Mechanical and Electrical Properties of Fluoro Elastomer/MWCNT Nanocomposites. Journal of Nanomaterials, 2012, pp. 1-9. 217. Yang, S., Xu, Y., Sun, Y., Zhang, G., and Gao, D., 2012. Size Controlled Synthesis, Magnetic Property and Photocatalytic Property of Uniform α-Fe2O3 Nanoparticles via a Facile Additive Free Hydrothermal Route. Cryst Eng Comm, 14(23), pp. 7915-7921. 218. Yang, Y., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., and Huang, X., 2019. Nanometarials for the Removal of Heavy Metals form Wastewater. Nanomaterials, 9(424), pp. 1-39. 219. Yuan, Y., and Lee, T. R., 2013. Contact Angle and Wetting Properties. Science Material, pp. 3-34. 220. Yu, B. Y., and Kwak, S. Y., 2012. Carbon Quantum Dots Embedded with Mesoporous Hematite Nanospheres as Efficient Visible Light Active Photocatalysts. Journal of Materials Chemistry, 22(17), pp. 8345-8353. 221. Yu, J., Wang, W., Cheng, B., and Su, B. L., 2009. Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment. Journal of Physical Chemistry C, 113(16), pp. 6743-6750. 222. Yu, Y., Yu, J. C., Yu, J., Kwok, Y., Che, Y., Zhao, J., Ding, L., Ge, W., and Wong, P., 2005. Enhancement of Photocatalytic Activity of Mesoporous TiO2 by using Carbon Nanotubes. Applied Catalysis A: General, 289(2), pp. 186-196. 223. Yuan, L., Wang, Y., Cai, R., Jiang, Q., Wang, J., Li, B., Sharma, A., and Zhou, G., 2012. The Origin of Hematite Nanowire Growth during the Thermal Oxidation of Iron. Materials Science and Engineering: B, 177(3), pp. 327-336. 224. Zawawi, N. A., Majid, Z. A., Aini, N., and Rashid, A., 2016. Effect of Acid Oxidation Method on Multi-Walled Carbon Nanotubes (MWCNTs) for Drug Delivery Application. International Journal of Advanced Scientific Research and Management, 1 (11), pp. 14-22. 225. Zboril, R., Mashlan, M., and Petridis, D., 2002. Iron (III) Oxides from Thermal Processes-Synthesis, Structural and Magnetic Properties, Mossbauer Spectroscopy Characterization and Applications. Chemistry of Materials, 14(3), pp. 969-982. 226. Zhang, M., Bradford, S. A., Simunek, J., Vereecken, H., and Klumpp, E., 2019. Co-Transport of Multi-Walled Carbon Nanotubes and Sodium Dodecylbenzene Sulfonate in Chemically Heterogeneous Porous Media. Environment Pollution, 247, pp. 907-916. 227. Zhang, Q., Sando, D., and Nagarajan, V., 2016. Chemical Route Derived Bismuth Ferrite Thin Films and Nanomaterials. Journal of Materials Chemistry C, 4(19), pp. 4092-4124. 228. Zhang, H., Ming, H., Lian, S., Huang, H., Li, H., Zhang, L., and Liu, Y., 2011. Fe2O3/ Carbon Quantum Dots Complex Photocatalysts and their Enhanced Photocatalytic Activity under Visible Light. RCS Advances, 40(41), pp. 10822-10825. 229. Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., and Liu, R., 2014a. Effect of Aspect Ratio and Surface Defects on the Photocatalytic Activity of ZnO Nanorods. Scientific Reports, 4(1), pp. 1-8. 230. Zhang, Z. J., Lu, C. Y., Huang, W., Guan, W. S., and Peng, Y. X., 2014b. Synthesis of Fe2O3/CNTs for the Fast Removal of Tetracycline from Aqueous Solutions. Advanced Materials Research, 915, pp. 933-941. 231. Zhang, Z., Hossain, F., and Takahashi, T., 2010. Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays for Photoelectrocatalytic Degradation of Azo Dye under Simulated Solar Light Irradiation. Applied Catalysis B: Environmental, 95(3-4), pp. 423-429. 232. Zhao, Z., Zhou, X., and Liu, Z., 2015. Synthesis of Nanosphere α-Fe2O3/MWCNT Composite as Photocatalyst for the Degradation of Rhodamine B. In Proceedings of the 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, 39(3), pp. 2317-2321. New York. 233. Zhong, M., Liu, Z., Zhong, X., Yu, H., and Zeng, D., 2011. Thermal Growth and Nanomagnetism of the Quasi-One Dimensional Iron Oxide. Journal of Materials Science and Technology, 27(11), pp. 985-990. 234. Zhou, W., Pan, K., Qu, Y., Sun, F., Tian, C., Ren, Z., Tian, G., and Fu, H., 2010a. Photodegradation of Organic Contamination in Wastewaters by Bonding TiO2/Single-Walled Carbon Nanotube Composites with Enhanced Photocatalytic Activity. Chemosphere, 81(5), pp. 555-561. 235. Zhou, X., Yang, H., Wang, C., Mao, X., Wang, Y., Yang, Y., and Liu, G., 2010b. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One Dimensional Iron Oxide Particles. Journal of Physical Chemistry C, 114(40), pp. 17051-17061. 236. Zhou, Y., Fang, Y., and Ramasamy, R. P., 2019. Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors, 19(2), pp. 1-29. 237. Zhu, J., Yudasaka, M., Zhang, M., and Iijima, S., 2004. Dispersing Carbon Nanotubes in Water: A Non-covalent and Non-organic Way. Journal of Physical Chemistry B, 108(31), pp. 11317-11320.