Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors

Supercapacitor is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the supercapacitor cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is to fa...

Full description

Saved in:
Bibliographic Details
Main Author: Raja Seman, Raja Noor Amalina
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/24857/1/Preparation%20Of%20Graphenemolybdenum%20Disulfide%20Based%20Electrodes%20And%20Its%20Electrochemical%20Performance%20In%20Supercapacitors.pdf
http://eprints.utem.edu.my/id/eprint/24857/2/Preparation%20Of%20Graphenemolybdenum%20Disulfide%20Based%20Electrodes%20And%20Its%20Electrochemical%20Performance%20In%20Supercapacitors.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.24857
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Mohd Abid, Mohd Asyadi 'Azam

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Raja Seman, Raja Noor Amalina
Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors
description Supercapacitor is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the supercapacitor cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is to fabricate the molybdenum disulfide (MoS2), graphene and G/MoS2 hybrid electrode and their usage as symmetric and asymmetric supercapacitors. The electrode was prepared by using a simple and facile slurry technique. By this, XRD was used to analyze the crystal phase and structure of the as-prepared graphene, MoS2, and G/ MoS2 hybrid. The peaks at 14.3°, 33.8°, and 57.5° are attributed to the (002), (100), and (110) plane of MoS2 crystal. From Raman spectroscopy shows the characteristic peaks of graphene (D, G and 2D) and MoS2 (E12g band at 377 cm-1 and A1g band at 403 cm-1) are retained in the Raman spectra of G/MoS2 which can confirm the fact that the hybrid of G/MoS2 is composed of MoS2 and graphene. Next, the XPS analysis was carried out to deduce the exact elemental composition of the G/MoS2. The full scan of the G/MoS2 gives the characteristic peaks for Mo 3d, S 2p, C ls and 0 ls with their corresponding binding energies. The morphologies and microstructures of the MoS2, graphene and G/MoS2 are systematically characterized by FESEM observation. The high resolution of FESEM image further reveals that the MoS2 structures are constructed with layers of nanosheets. Meanwhile, FESEM image of graphene sheets illustrating the uniformly distributed of graphene into the Ni foam. Also, the inclusion of MoS2 nanosheets resulted in a rough surface, logically due to co-stacking of MoS2 nanosheets over the graphene nanosheets. Further, the morphology of the G/MoS2 was examined by TEM and reveals the crystal lattice structure of MoS2 and graphene in G/MoS2. The interlayer spacing of MoS2 in the hybrid were estimated to be -0.63 nm, which can be indexed to their (002) lattice planes of hexagonal phase of MoS2. Regardless of the difference in electrode being used, cyclic voltammetry (CV) analysis from the supercapacitor depicted a relatively good specific gravimetric capacitance (Csp) and rate capability performance. A nearly rectangular-shaped CV curve was observed even at high scan rate. Besides, from the charge-discharge measurement, the symmetrical triangular curves reveal that there is no IR drops or voltage drops because oflow internal resistance in the electrodes. Also, the electrode shows excellent discharge behavior and good capacitance retention of up to 10,000 cycles. Thus, this 2D heterostructures may provide excellent rate capabilities, high capacitance, and long lifecycle energy device. This is very promising for the development of high energy and high power density of device for multi-scale applications or industries.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Raja Seman, Raja Noor Amalina
author_facet Raja Seman, Raja Noor Amalina
author_sort Raja Seman, Raja Noor Amalina
title Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors
title_short Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors
title_full Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors
title_fullStr Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors
title_full_unstemmed Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors
title_sort preparation of graphene/molybdenum disulfide based electrodes and its electrochemical performance in supercapacitors
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Manufacturing Engineering
publishDate 2019
url http://eprints.utem.edu.my/id/eprint/24857/1/Preparation%20Of%20Graphenemolybdenum%20Disulfide%20Based%20Electrodes%20And%20Its%20Electrochemical%20Performance%20In%20Supercapacitors.pdf
http://eprints.utem.edu.my/id/eprint/24857/2/Preparation%20Of%20Graphenemolybdenum%20Disulfide%20Based%20Electrodes%20And%20Its%20Electrochemical%20Performance%20In%20Supercapacitors.pdf
_version_ 1747834097740283904
spelling my-utem-ep.248572022-03-15T14:48:07Z Preparation Of Graphene/Molybdenum Disulfide Based Electrodes And Its Electrochemical Performance In Supercapacitors 2019 Raja Seman, Raja Noor Amalina T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Supercapacitor is highly promising energy device due to its electrical charge storage performance and significant lifecycle ability. Construction of the supercapacitor cell especially its electrode fabrication is critical to ensure great application performance. The purpose of this research is to fabricate the molybdenum disulfide (MoS2), graphene and G/MoS2 hybrid electrode and their usage as symmetric and asymmetric supercapacitors. The electrode was prepared by using a simple and facile slurry technique. By this, XRD was used to analyze the crystal phase and structure of the as-prepared graphene, MoS2, and G/ MoS2 hybrid. The peaks at 14.3°, 33.8°, and 57.5° are attributed to the (002), (100), and (110) plane of MoS2 crystal. From Raman spectroscopy shows the characteristic peaks of graphene (D, G and 2D) and MoS2 (E12g band at 377 cm-1 and A1g band at 403 cm-1) are retained in the Raman spectra of G/MoS2 which can confirm the fact that the hybrid of G/MoS2 is composed of MoS2 and graphene. Next, the XPS analysis was carried out to deduce the exact elemental composition of the G/MoS2. The full scan of the G/MoS2 gives the characteristic peaks for Mo 3d, S 2p, C ls and 0 ls with their corresponding binding energies. The morphologies and microstructures of the MoS2, graphene and G/MoS2 are systematically characterized by FESEM observation. The high resolution of FESEM image further reveals that the MoS2 structures are constructed with layers of nanosheets. Meanwhile, FESEM image of graphene sheets illustrating the uniformly distributed of graphene into the Ni foam. Also, the inclusion of MoS2 nanosheets resulted in a rough surface, logically due to co-stacking of MoS2 nanosheets over the graphene nanosheets. Further, the morphology of the G/MoS2 was examined by TEM and reveals the crystal lattice structure of MoS2 and graphene in G/MoS2. The interlayer spacing of MoS2 in the hybrid were estimated to be -0.63 nm, which can be indexed to their (002) lattice planes of hexagonal phase of MoS2. Regardless of the difference in electrode being used, cyclic voltammetry (CV) analysis from the supercapacitor depicted a relatively good specific gravimetric capacitance (Csp) and rate capability performance. A nearly rectangular-shaped CV curve was observed even at high scan rate. Besides, from the charge-discharge measurement, the symmetrical triangular curves reveal that there is no IR drops or voltage drops because oflow internal resistance in the electrodes. Also, the electrode shows excellent discharge behavior and good capacitance retention of up to 10,000 cycles. Thus, this 2D heterostructures may provide excellent rate capabilities, high capacitance, and long lifecycle energy device. This is very promising for the development of high energy and high power density of device for multi-scale applications or industries. 2019 Thesis http://eprints.utem.edu.my/id/eprint/24857/ http://eprints.utem.edu.my/id/eprint/24857/1/Preparation%20Of%20Graphenemolybdenum%20Disulfide%20Based%20Electrodes%20And%20Its%20Electrochemical%20Performance%20In%20Supercapacitors.pdf text en public http://eprints.utem.edu.my/id/eprint/24857/2/Preparation%20Of%20Graphenemolybdenum%20Disulfide%20Based%20Electrodes%20And%20Its%20Electrochemical%20Performance%20In%20Supercapacitors.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=117098 phd doctoral Universiti Teknikal Malaysia Melaka Faculty of Manufacturing Engineering Mohd Abid, Mohd Asyadi 'Azam 1. Acerce, M., Voiry, D. and Chhowalla, M., 2015. Metallic IT Phase MoS2 Nanosheets as Supercapacitor Electrode Materials. Nature Nanotechnology, 10, pp. 3 13-3 18. 2. Adhikari, H., Ranaweera, C., Gupta, R. and S.R. Mishra, 2016. Facile Hydrothennal Synthesis of MoS2 as Advanced Electrodes for Super Capacitors Applications. Materirzls Research Society Advances, pp. 1-9. 3. Al-Jumaili, A., Alancherry, S., Bazaka, K. and Jacob, M.V., 2017. Review on the Antimicrobial Properties of Carbon Nanostmctures. Materials, 10, pp. 1066-1 192. 4. Al-Thabaiti, S.A., Hahn, R., Liu, N., Kirchgeorg, R., So, S., Schmuki, P., Basahel, S.N. and Bawaked, S.M., 2014. NH3 Treatment of Ti02 Nanotubes: from N-doping to Semimetallic Conductivity. Chemical Communications, 50(59), pp. 7960-7963. 5. Alyamani, A. and Lemine, O.M., 2012. FE-SEM Characterization of Some Nanomaterial, InTech, pp. 463-472. [online] Available at: http://www.intechopen.com/books/scanningelectron- microscopy/fe-sem-characterization-of-somenanomaterials[ Accessed on 16 July 20181. 6. Andrews, B., 201 1. Advent of Ultracapacitors Signals Change in Wind Turbine Capabilities. [online] Available at: http://www.renewableenergyworld.com/rea/news/article/2011103/advent-ofultracapacitorssignals- change-in-wind-turbine-capabilities [Accessed on 16 July 20181. 7. Aravindan, V., Gnanaraj, J., Lee, Y.S. and Madhavi, S., 2014. Insertion-type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews, 114, pp. 11619-1 1635. 8. Augustyn, V., Simon, P. and Dunn, B., 2014. Pseudocapacitive Oxide Materials for High- Rate Electrochemical Energy Storage. Energy and Environmental Science, 7(5), pp. 1597- 1614. 9. Avasarala, B. and Haldar, P., 201 0. Electrochemical Oxidation Behavior of Titanium Nitride Based Electrocatalysts Under PEM Fuel Cell Conditions. Electrochimica Acta, 55(28), pp. 90249034. 10. Avouris, P. and Dimitrakopoulos, C., 2012, Graphene: Synthesis and Applications Materials Today 15 pp. 86-89. 11. Azam, M.A., Manaf, N.S.A., Talib, E. and Bistamam, M.S.A., 2013. Aligned CNT froin Catalytic CVD Technique for Energy Storage Device: A Review. Ionics, 19, pp. 1455-1476. 12. Azam, M.A., Mudtalib, N.E.S.A.A. and Seman, R.N.A.R., 2018. Synthesis of Graphene Nanoplatelets from Palm-Based Waste Chicken Frying Oil Carbon Feedstock by Using Catalytic CVD. Materials Today Communications, 15, pp. 81-87. 13. Azam, M.A., Zulkapli, N.N., Dorah, N., Seman, R.N.A.R., Ani, M.H., Sirat, M.S., Ismail, E., Fauzi, F.B., Mohamed, M.A. and Majlis, B.Y., 2017. Review-Critical Considerations of High Quality Graphene Synthesized by PECVD for Electronic and Energy Storage Devices. ECS Journal of Solid State Science and Technology, 6, pp. M3035-M3048. 14. Bagotsky, V., 2005. Fundamentals of Electrochemistty, Hoboken, New Jersey: John Wiley & Sons. 15. Balasingam, S.K., Lee, J.S. and Jun, Y., 2016. MoSezIrGO based Hybrid Nanosheets for Supercapacitor Application. Dalton Transactions, 45, pp. 9646-9653. 16. Balogun, M.S., Li, C., Zeng, Y., Yu, M., Wu, Q., Wu, M., Lu, X. and Tong, Y., 2014. Titaniuin dioxide@titanium Nitride Nanowires on Carbon Cloth with Reinarkable Rate Capability for Flexible LIBs. Journal ofpower Sources, 272, pp. 946-953. 17. Banda, H., Aradilla, D., Benayad, A,, Chenavier, Y., Daffos, B., Dubois, L. and Duclairoir, F., 2017. One-step Synthesis of Highly Reduced Graphene Hydrogels for High Power Supercapacitor Applications. Journal ofpower Sources, 360, pp. 538-547. 18. Basics of Electrocheinical Impedance Spectroscopy. [online] Available at https://www.gainry.com~application-notes/EISIa-snapshot-of-electrochemical-iinpedancespectroscopy1 [Accessed on 9 August 20181. 19. Baughinan, R.H., Zakhidov, A.A. and De Heer, W.A., 2002. CNTs-The Route Toward Applications. Science, 297(5582), pp. 787-792. 20. Barzegar, F., Bello, A., Moinodu, D.Y., Dangbegnon, J.K., Taghizadeh, F., Madito, M.J., Masikhwa, T.M. and Manyala N., 2015. ASC Based on an a-Moo3 Cathode and Porous AC Anode Materials. RSCAdvances, 5, pp. 37462-37468. 21. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, 2. and Chen, Y., 2008. Evaluation of Solution-Processed rGO Filins as Transparent Conductors. ACS Nano, 2(3), pp. 463470. 22. Benson, J., Kovalenko, I., Boukhalfa, S., Lashinore, D., Sanghadasa, M. and Yushin, G., 2013. Multifunctional CNT Polymer Coinposites for Ultra Tough Structural Supercapacitors and Desalination Devices. Advanced Materials, 25(45), pp. 6625-6632. 23. Bernal, M.M., ~lvarezL, ., Giovanelli, E., Amiiz, A., Gonzilez, L.R., Casado, S., Granados, D., Pizarro, A.M., Goinez, A.C. and Perez, E.M., 2016. Luminescent TMD Nanosheets Through One-Step Liquid Phase Exfoliation. 2D Materials, 3, pp. 035014-035024. 24. Bissett, M.A., Kinloch, I.A. and Dryfe, R.A.W., 2015. Characterization of MoS2-Graphene Composites for High Performance Coin Cell Supercapacitors. ACS Applied Materials and Interfaces, 7, pp. 17388-17398. 25. Bo, Z., Tian, Y., Han, Z.J., Wu, S., Zhang, S., Yan, J., Cen, K. and Ostrikov, K., 2017. Tuneable Fluidics Within Graphene Nanogaps for Water Purification and Energy Storage. Nanoscale Horizons, 2, pp. 89-98. 26. Bubna, P., Advani, S.G. and Prasad, A.K., 2012. Integration of Batteries with Ultracapacitors for a Fuel Cell Hybrid Transit Bus, Journal of Power Sources, 199, pp. 360-366. 27. Burke, A,, 2000. Ultracapacitors: Why, How, and Where Is the Technology. Jouvnal of Power Sources, 91(1), pp. 37-50. 28. Cakici, M., Kakarla, Reddy, R. and Marroquin F.A, 2017. Advanced Electrochemical Energy Storage Supercapacitors Based on The Flexible Carbon Fiber Fabric-Coated with Uniform 29. Coral-Like MnO Structured Electrodes. The Chemical Engineering Journal, 309, pp. 151- 158. 30. Cao, X., Shi, Y., Shi, W., Rui, X., Yan, Q., Kong, J. and Zhang, H., 2013. Preparation of MoSz-Coated 3D Graphene Networks for High-Perfonnance Anode Material in LIBs. Small, 9, pp. 3433-3438. 31. Cao, X., Yin, Z. and Zhang, H., 2014. 3DG Materials: Preparation, Structures and Application in Supercapacitors. Energy and Environmental Science, 7, pp. 1850-1 865. 32. Cao, Y., Li, G. and Li, X., 2016. Graphene/layered Double Hydroxide Nanocomnposite: Properties, Synthesis, and Applications. Chemical Engineering Journal, 292, pp. 207-223. 33. Cellergy, 2012. Super-capacitors Deliver Backup Power Supply to SSD. [online] Available at: http://www.cellergycap.coidimages/stories/pdssdbachp.pdf [Accessed on 16 July 20181. 34. Cericola, D., Ruch, P.W., Kotz, R., Novhk, P. and Wokaun, A,, 2010. Characterization ofbimaterial Electrodes for Electrochemical Hybrid Energy Storage Devices. Electrochemisty Communications, 12(6), pp. 8 12-8 15. 35. Chang, H.H., 2012. Electrochemically Synthesized GraphenePolypyrrole Composites and Their use in Supercapacitor. Carbon, 50, pp. 2331-2336. 36. Chang, J., Jin, M., Yao, F., Kim, T.H., Le, V.T., Yue, H., Gunes, F., Li, B., Ghosh, A., Xie, S. and Lee, Y.H., 2013. A Symmetric Supercapacitors Based on GrapheneIMnOz Nanospheres and GraphenelMoO3 Nanosheets with High Energy Density. Advanced Functional Materials, 23, pp. 5074-5083. 37. Chang, K.H., Hu, C.C., Huang, C.M., Liu, Y.L. and Chang, C.I., 2011. Microwave-assisted Hydrothermal Synthesis of Crystalline W03-W03.0.5 Hz0 Mixtures for Pseudocapacitors of the Asymmetric Type. Journal ofpower Sources, 196(4), pp. 2387-2392. 38. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y. and Ding, Y., 2009. Progress in Electrical Energy Storage System: A Critical Review. Progress in Natural Science, 19(3), pp. 291- 312. 39. Chen, H., Miiller, M.B., Gilinore, K.J., Wallace, G.G. and Li, D., 2008. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials, 20(18), pp. 3557-3561. 40. Chen, K., Song, S. and Xue, D., 2014a. An Ionic Aqueous Pseudocapacitor System: Electroactive Ions in Both a Salt Electrode and Redox Electrolyte. RSC Advances, 4, pp. 23338-23343. 41. Chen, L.F., Lu, Y., Yu, L. and Lou, X.W., 2017. Designed Formation of Hollow Particle- Based Nitrogen-Doped Carbon Nanofibers for High Performance Supercapacitors. Energy and Environmental Science, 10, pp. 1777-1783. 42. Chen, P.C., Shen, G., Shi, Y., Chen, H. andZhou, C., 2010. Preparation and Characterization of Flexible ASCs Based on TMO NanowireISWCNT Hybrid Thin-Film Electrodes. ACS Nano, 4(8), pp. 4403441 1. 43. Chen, T. and Dai, L., 2013 Carbon Nanomaterials for High Performance Supercapacitors. Materials Today, 16, pp. 272-280. 44. Chen, T., Tang, Y., Qiao, Y., Liu, Z., Guo, W., Song, J., Mu, S., Yu, S., Zha, Y. and Gao F., 2016a. All-Solid-state High Performance ASCs Based on Novel MnS Nanocrystal and AC Material. ScientiJic Reports, 6, pp. 23289-12297. 45. Chen, T.T., Liu, H.P., Wei, Y.J., Chang, I.C., Yang, M.H., Lin, Y.S., Chan, K.L., Chiu, H.T. and Lee, C.Y., 2014b. Porous Titanium Oxynitride Sheets as Electrochemical Electrodes for Energy Storage. Nanoscale, 6(10), pp. 5 106-5 109. 46. Chen, S., Xiong, W., Zhou, Y., Luc, Y. and Zeng, X. C., 2016b. An Ab Initio Study of the Nickel-Catalyzed Transformation of Amorphous Carbon into Graphene in Rapid Thermal Processing. Nanoscale, 8, pp. 9746-9755. 47. Chen, X., Zhang, L. and Chen, S. 2015. Large Area CVD Growth of Graphene. Synthetic Metals, 210, pp. 95-108. 48. Chen, X., Xiang, R., Zhao, P., An, H., Inoue, T., Chiashi, S. and Maruyaina, S., 2016c. CVD Growth of Large Single-Crystal Bemal-Stacked Bilayer Graphene from Ethanol. Carbon, 107, pp. 852-856. 49. Chen, Y.C., Lin, Y.G., Hsu, Y.K., Yen, S.C., Chen, K.H. and Chen, L.C., 2014. Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for ASCs. Small, 10(18), pp. 3803-3810. 50. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P. and Zhang, H., 2013. The Chemistry of 2D Layered TMD Nanosheets. Nature Chemistry, 5, pp. 263-275. 51. Cho, S., Kim, M. and Jang, J., 2015. Screen-printable and Flexible Ru02 Nanoparticle- Decorated PEDOT: PSSJGraphene Nanocomposite with Enhanced Electrical and Electrochemical Performances for High-Capacity Supercapacitor. ACS Applied Materials & Interfaces, 7(19), pp. 10213-1 0227. 52. Choudhary, N., Li, C., Moore, J., Nagaiah, N., Zhai, L., Jung, Y. and Thomas, J., 2017. ASC Electrodes and Devices. Advanced Materials, 29(21), pp.1605336-1605365. 53. Chuang, C.M., Huang, C.W., Teng, H. and Ting, J.M., 2010. Effects of CNT Grafting on the Performance of EDLCs. Energy Fuels, 24(12), pp. 6476-6482. 54. Conner, M, 2007. Supercapacitor-Powered Screwdriver Recharges in 90 Seconds. [online] Available at: https://www.edn.com/electronicsblogs/ powersource/4307861/Supercapacitor-powered-screwdriver-recharges-in-9O-seconds [Accessed on 24 July 20181. 55. Conway, B.E. and Pell, W.G., 2003. Double-layer and Pseudocapacitance Types of Electrochemical Capacitors and Their Applications to the Develop~nent of Hybrid Devices. Journal of Solid State Electrochemistry, 7(9), pp. 637-644. 56. Cui, L., Li J. and Zhang, X.G., 2009. Preparation and Properties of Co304 Nanorods as Supercapacitor Material. Journal ofApplied Electrochemistiy, 39, pp. 1871-1876. da Silveira Firmiano, E.G., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Schreiner, W.H. and Leite, E.R., 2014. Supercapacitor Electrodes Obtained by Directly Bonding 2D MoSz on rGO. Advanced Energy Materials, 4(6), pp. 1301380-1301388. 57. Dai, L., Chang, D.W., Baek, J.B. and Lu, W., 2012. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 8(8), pp. 1130-1 166. 58. Daud, M., Kamal, M.S., Shehzad, F. and Al-Harthi M.A., 2016. Graphenellayered Double Hydroxides Nanocomposites: A Review of Recent Progress in Synthesis and Applications. Carbon, 104, pp. 241-252. 59. Deng, J., Li, H., Xiao, J., Tu, Y., Deng, D., Yang, H., Tian, H., Li, J., Rena, P. and Bao, X., 2015. Triggering the Electrocatalytic Hydrogen Evolution Activity of the Inert 2D MoS2 Surface via Single-Atom Metal Doping. Energy and Environmental Science, 8, pp. 1594- 1601. 60. Denison, C., 2013. This Wireless Bainboo Speaker Charges in 5 Minutes and Plays for 6 Hours. [online] Available at: http://www.digitaltrends.com/home-theater/wireless-bamboospeaker- charges-5-minutes-plays-6-hours1 [Accessed on 24 July 201 81. 61. Dhelipan, M., Arunchander, A., Sahu, A.K. and Kalpana, D., 2017. AC from Orange Peels as Supercapacitor Electrode and Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. Journal of Saudi Chemical Society, 21, pp. 487494. 62. Dutrow, B.L. and Clark, C.M., 2018. X-ray Powder Diffraction (XRD). [online] Available at: https://serc.carleton.edu/research - educationlgeoche~nsheets/techniques~XRD.html. [Accesed on 29 June 20181. 63. El-Kady, M.F., Shao, Y. and Kaner, R.B., 2016. Graphene for Batteries, Supercapacitors and Beyond. Nature Reviews Materials, 1, pp.16033-16046. 64. El-Kady, M.F., Strong, V., Dubin, S. and Kaner, R.B., 2012. Laser Scribing of High- Perfonnance and Flexible Graphene-based Electrochemical Capacitors. Science, 335(6074), pp. 1326-1330. 65. Endo, M., Takeda, T., Kim, Y., Koshiba, K. and Ishii, K., 2001. High Power (EDLC's); from Operating Principle to Pore Size Control in Advanced ACs. Carbon Letters, 1(3), pp. 117- 128. 66. Fan, X., Chen, X. and Dai, L, 2015. 3D Graphene based Materials for Energy Storage. Current Opinion in Colloid &Interface Science, 20, pp. 429438. 67. Fastcap, 2013. Introducing FastCAP's Ulysses Power Systems for Drilling Applications. [online] Available at: http:Nwww.fastcapsystems.com/products [Accessed on 24 July 20181. 68. Fernindez, J.A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, F. and Centeno, T.A., 2008. Perfonnance of Mesoporous Carbons Derived from Poly(viny1 alcohol) in Electrocheinical Capacitors. Journal of Power Sources, 175, pp. 675-679. 69. Fisher, R.A., Watt, M.R. and Ready, W.J., 2013. Functionalized CNT Supercapacitor Electrodes: A Review on Pseudocapacitive Materials. ECS Journal of Solid State Science and Technology, 2(10), pp. M3 170-M3 177. 70. Frackowiak, E. and Beguin, F., 2001. Carbon Materials for the Electrochernical Storage of Energy in Capacitors. Carbon, 39, pp. 937-950. 71. Gainby, J., Tabenla, P., Simon, P., Fauvarque, J. and Chesneau, M., 2001. Studies and Characterizations of Various ACs used for CarbonfCarbon Supercapacitors. Journal of Power Sources, 101(1), pp. 109-1 16. 72. Gao, S., Sun, Y., Lei, F., Liang, L., Liu, J., Bi, W., Pan, B. and Xie, Y., 2014. Ultrahigh Energy Density Realized by a Single-Layer B-Co(0H)z All-Solid-state ASC. Angewandte Chemie International Edition in English, 53, pp. 12789-1 2793. 73. Gao, Y., Zhang, Y., Zhang, Y., Xi, L., Li, X., Su, F., Wei, X., Xu, Z., Chen, C. and Cai, R., 2015. 3D Paper-like Graphene Framework with Highly Orientated La~ninar Structure as Binder-Free Supercapacitor Electrode. Journal ofEnergy Chemistry, 25, pp. 49-54. 74. Geiin, A,, 2009. Graphene: Status and Prospects, Science, 324(5934), pp. 1530-1534. 75. Geiin, A. and Novoselov, K., 2007. The Rise of Graphene. Nature Materials, 6, pp. 183- 191. 76. Ghosh, A. and Lee, Y. H., 2012. Carbon-based ECs. Chemsuschem, 5, pp. 480499, Gidwani, M., Bhagwani, A. and Rohra, N., 2014. Supercapacitors: the near Future of Batteries. International Journal ofEngineering Inventions, 4(5), pp. 22-27. 77. Gong, Y., Shi, G., Zhang, Z., Zhou, W., Jung, J., Gao, W., Ma, L., Yang, Y., Yang, S., You, G., Vajtai, R., Xu, Q., MacDonald, AH., Yakobson, B. I., Lou, J., Liu, Z. and Ajayan, P.M., 186 2014. Direct Chemical Conversion of Graphene to Boron- and Nitrogen- and Carbon- Containing Atomic Layers. Nature Communications, 5, pp. 3 193-3200. 78. Gu, D., Li, W., Wang, F., Bongard, H., Spliethoff, B., Schmidt, W., Weidenthaler, C., Xia, Y., Zhao, D. and Schiith, F., 2015. Controllable Synthesis of Mesoporous Peapod-like Co304@CNT Arrays for High-Performance LIBs. Angewandte Chemie International Edition in English, 54, pp. 7060-7064. 79. Gu, W. and Yushin, G., 2013. Review of Nanostructured Carbon Materials for Electrochemical Capacitor Applications: Advantages and Limitations of AC, Carbidederived Carbon, Zeolite-templated Carbon, Carbon Aerogels, CNTs, Onion-like Carbon, and Graphene. WIRES Energy and Environment, 3, pp. 424-473. 80. Guan, C., Liu, J., Wang, Y., Mao, L., Fan, Z., Shen, Z., Zhang, H. and Wang, J., 2015. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano, 9(5), pp. 5198-5207. 81. Gupta, V. and Miura, N., 2006. Influence of the Microstructure on the Supercapacitive Behavior of PANIISWCNT Composites. Journal ofpower Sources, 157(1), pp. 616-620. 82. Guo, Y., Chang, B., Wen, T., Zhao, C., Yin, H., Zhou, Y., Wang, Y., Yang, B. and Zhang, S., 2016. One-pot Synthesis of Graphenelzinc Oxide by Microwave Irradiation with Enhanced Supercapacitor Performance. RSC Advances, 6, pp. 19394-19403. 83. Hartley, C.S., 2014. Graphene Synthesis: Nanoribbons from the Bottom-Up. Nature Chemistry, 6. pp. 91-102. 84. Havener, R.W., Ju, S.Y., Brown, L., Wang, Z., Wojcik, M., Vargas, C.S.R. and Park, J., 2012. High-throughput Graphene Imaging on Arbitrary Substrates with Widefield Raman Spectroscopy. ACSNano, 6, pp. 373-380. 85. He, G., Ling, M., Han, X., El Amaiein, D.I.A., Shao, Y., Li, Y., Li, W., Ji, S., Li, B., Lu, Y., Zou, R., Wang, F.R., Brett, D.J.L., Guo, Z.X., Blackman, C. and Parkin, I.P., 2017. Selfstanding Electrodes with Core-Shell Structures for High-Performance Supercapacitors. Energy Storage Materials, 9, pp. 119-125. 86. He, Z. and Que, W., 2016. MoS2 Nanomaterials: Structures, Properties, Synthesis and Recent Progress on Hydrogen Evolution Reaction. AppliedMaterials Today, 3 pp. 23-56. 87. Hermann, V., Schneuwly, A. and Gallay, R., 2001. High Performance Double-Layer Capacitor for Power Electronic Applications. In Proceedings of the Power Conversion and Intelligent Motion (PCIM), Niirnberg, Germany, pp. 19-21. 88. Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakrabarti, S., Suekaned, O., Pan, L., Nakayama, Y., Yamagata, M. and Ishikawa, M., 2008. Vertically Aligned Double-Walled CNT Electrode Prepared by Transfer Methodology for EDLC. Journal ofpower Sources, 185, pp. 1580-1584. 89. Hu, L., Chen, W., Xie, X., Liu, N., Yang, Y., Wu, H., Yao, Y., Pasta, M., Alshareef, H.N. and Cui, Y., 2011. Symmetrical MnOz-CNT-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. ACS Nano, 5(1l), pp. 8904-8913. 90. Hu, Y., Li, X., Lushington, A., Cai, M., Geng, D., Banis, M.N., Li, R. and Sun, X., 2013. Fabrication of MoS2-Graphene Nanocomposites by Layer-by-Layer Manipulation for High- Performance LIB Anodes. ECS Journal ofSolid State Science and Technology, 2(10), pp. M3034-M3039. 91. Huang, K.J., Wang, L., Liu, Y.J., Liu, Y.M., Wang, H.B., Gan, T. and Wang, L.L., 2013. Layered MoSzgraphene Composites for Supercapacitor Applications with Enhanced Capacitive Performance. International Journal of Hydrogen Energy, 38, pp. 14027-14034. 92. Huang, K.J., Zhang, J.Z. and Fan, Y., 2015. Preparation of Layered MoSez Nanosheets On Ni-foam Substrate with Enhanced Supercapacitor Performance. Materials Letters, 152, pp. 93. 244-247. 94. Hubley, R., 2012. Green Energy used by Capital's New Cable Car. [online] Available at: http://www.sourcewire.com/news/73933/green-energy-usedby-capital-s-new-cable-car [Accessed on 24 July 20181. 95. Iamprasertkun, P., Krittayavathananon, A. and Sawangphruk, M., 2016. N-doped rGO Aerogel Coated on Carboxyl Modified Carbon Fiber Paper for High-Performance Ionic- Liquid Supercapacitors. Carbon, 102, pp. 455461. 96. Inagaki, M., Konno, H. and Tanaike, O., 2010. Carbon Materials for Electrocheinical Capacitors. Journal ofpower Sources, 195(24), pp. 7880-7903. 97. Iro, Z.S., Subramani, C. and Dash, S.S., 2016. A Brief Review on Electrode Materials for Supercapacitor. International Journal of Electrochemical Science, 11, pp. 10628-1 0643. 98. Ismail, E., Sirat, M.S., Hadi, A.M.A., Othnan, R., Azam, M.A. and Ani, M.H., 2017. Synthesis of Large Area Few Layer Graphene by Open Flame Deposition. Sains Malaysiana, 46, pp. 101 1-1016. 99. Jagadale, A.D., Kumbhar, V.S., Dhawale, D.S. and Lokhande, C.D., 2013, Performance Evaluation of Symmetric Supercapacitor Based on Cobalt Hydroxide [Co(OH)2] Thin Film Electrodes. Electrochimica Acta, 98, pp. 32-38. 100. Jagannadham, K., 201 1. Thermal Conductivity of Indiuin-Graphene and Indium-Gallium- Graphene Composites. Journal ofElectronic Materials, 40, pp. 25-34. 101. Jana, M.K., and Rao, C.N.R., 2016. 2D Inorganic Analogues of Graphene: TMDs. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 374, pp. 1-30. 102. Javier, J., 2014. An Introduction to Raman Spectroscopy: Introduction and Basic Principles. [online] Available at: http://www.spectroscopynow.com~detailsleducatiodsepspec1882educatiodAn- Introduction-to-Raman-Spectroscopy-Introduction-and-Basic-Principle[sA ccessed 16 July 20181. 103. Jawaid, A,, Nepal, D., Park, K., Jespersen, M., Qualley, A,, Mirau, P., Drummy, L.F. and Vaia, R.A., 2016. Mechanism for Liquid Phase Exfoliation of MoS2. Chemistry ofMaterials, 28, pp. 337-348. 104. Jeon, H., Han, J.H., Yu, D.M., Lee, JY., Kim, T.H. and Hong, Y.T., 2017. Synthesis of Mesoporous rGO by Zn Particles for Electrodes of Supercapacitor in Ionic Liquid Electrolyte. Journal oflndustvial and Engineering Chemistry, 45, pp. 105-1 10. 105. Jia, Y., Wan, H., Chen, L., Zhou, H. and Chen, J., 2017. Hierarchical Nanosheet-based MoS2lGraphene Nanobelts with High Electrochemical Energy Storage Performance. Journal of Power Sources, 354, pp. 1-9. 106. Jian, X., Liu, S., Gao, Y., Tian, W., Jiang, Z., Xiao, X., Tang, H. and Yin, L., 2016. Carbonbased Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions. Journal of Electrical Engineering, 4, pp. 75-87. 107. Jianining, L. and Xiaomei, C., 2015. Ru021MnOz Coinposite Materials for High- Perfonnance Supercapacitor Electrodes. Journal of Semiconductors, 36(8), pp. 083006- 083001 1. 108. Jiang, L. and Fan, Z., 2014. Design of Advanced Porous Graphene Materials: Froin Graphene Nanolnesh to 3D Architectures. Nunoscale, 6, pp. 1922-1945. 109. Jiang, L., Zhang, S., Kulinich, S.A., Song, X., Zhu, J., Wang, X. and Zeng, H., 2015. Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Ilnprove Capacitances of Supercapacitors. Material Research Letters, 3(4), pp. 177-1 83. 110. Jost, K., Dion G. and Gogotsi, Y., 2014. Textile Energy Storage in Perspective. Journal of Materials Chemistry A, 2, pp. 10776-10787. 111. Kamila, S., Mohanty, B., Sainantara, A.K., Guha, P., Ghosh, A,, Jena, B., Satyam, P.V., Mishra, B.K. and Jena, B.K., 2017. Highly Active 2D Layered MoSz-rGO Hybrids for Energy Conversion and Storage Applications. ScientiJic Reports, 7, pp. 8378-8390. 112. Karthika, P., Rajalakshin, N. and Dhathathreyan, K.S., 2012. Functionalized Exfoliated Graphene Oxide as Supercapacitor Electrodes. Soft Nanoscience Letters, 2, pp. 59-66. 113. Ke, Q., Liu, Y., Liu, H., Zhang, Y., Hu, Y. and Wang, J., 2014. Surfactant-modified Chemically rGO for Electrocheinical Supercapacitors. RSC Advances, 4, pp. 26398-26406. 114. Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-warthan A.A. and Treinel, W., 2015. Graphene based Metal and Metal Oxide Nanocoinposites: Synthesis, Properties and Their Applications. Journal of Materials Chemistry A, 3, pp. 18753-18808. 115. Khomenko, V., Frackowiak, E. and Beguin, F., 2005. Determination of the Specific Capacitance of Conducting Polymer/Nanotubes Composite Electrodes Using Different Cell Configurations. Electrochimica Acta, 50(12), pp. 2499-2506. 116. Kim, B., Chung, H. and Kim, W., 2012. High-Performance Supercapacitors based on VACNTs and Nonaqueous Electrolytes. Nanotechnology, 23(15), pp. 155401-155408. 117. Kim, B.K., Sy, S., Yu, A. and Zhang, J., 2015. Electrochemical Supercapacitors for Energy Storage and Conversion. Handbook of Clean Energy Systems, John Wiley & Sons, pp. 1- 25. 118. Kim, C.D., Min, B.K. and Jung, W.S., 2009. Preparation of Graphene Sheets by the Reduction of Carbon Monoxide. Carbon, 47, pp. 1610-1612. 119. Kim, H., Park, K.Y., Cho, M.Y., Kim, M.H., Hong, J., Jung, S.K., Roh, K. C. and Kang, K., 2014. High-performance Hybrid Supercapacitor based on Graphene-Wrapped Li4Ti5012 and Activated Carbon. ChemElectroChem, 1, pp. 125-130. 120. Kim, Y., Horie, Y., Ozaki, S., Matsuzawa, Y., Suezaki, H., Kim, C., Miyashita N. and Endo, M., 2004. Correlation Between the Pore and Solvated Ion Size on Capacitance Uptake of PVDC-based Carbons. Carbon, 42(8-9), pp. 1491-500. 121. Kim, Y., Song, J.G., Park, Y.J., Ryu, G.H., Lee, S.J., Kim, J.S., Jeon, P.J., Lee, C.W., Woo, W.J., Choi, T., Jung, H., Lee, H.B.R., Myoung, J.M., Im, S., Lee, Z., Ahn, J.H., Park, J. and 122. Kim, H., 2016. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. Scientific Reports, 6, pp. 18754-18761. 123. Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H., 2011. Recent Advances in Graphene-based Biosensors. Biosensors and Bioelectronics, 26, pp. 4637- 4648. 124. Kusko, A. and DeDad, J., 2007. Stored Energy-Short-Term and Long-Term Energy Storage Methods. IEEE Industiy Applications Magazine, 13(4), pp. 66-72. 125. Lang, J.W., Kong, L.B., Liu, M., Luo, Y.C. and Kang, L., 2010. ASCs based on Stabilized a-Ni(0H)z and AC. Journal of Solid State Electrochemistry, 14(8), pp. 1533-1539. 126. Late, D.J., Rout, C.S., Chakravarty, D. and Ratha, S., 2015. Emerging Energy Applications of 2D Layered Materials. Canadian Chemical Transactions, 3, pp. 118-157. 127. Lau, K.T., Azam, M.A. and Seman, R.N.A.R., 2018. Influence of Pulsed Electrophoretic Deposition of Graphitic CNT on Electrochemical Capacitor Performance. Journal of Engineering Science and Technology, 13, pp. 295-308. 128. Lee, K.K., Deng, S., Fan, H.M., Mhaisalkar, S., Tan, H.R., Tok, E.S., Loh, K.P., Chin, W.S. and Sow, C.H., 2012. wFe203 Nanotubes-rGO Composites as Synergistic Electrocheinical Capacitor Materials. Nanoscale, 4(9), pp. 2958-2961. 129. Lee, M., Balasingain, S.K., Jeong, H.Y., Hong, W.G., Kim, B.H. and Jun, Y., 2015. One- Step Hydrothermal Synthesis of Graphene Decorated V205 Nanobelts for Enhanced Electrochemical Energy Storage. Scientific Reports, 5, pp. 8 151-8 158. 130. Lewandowska, R., 2018. Number of layers of MoS2 determined using Raman Spectroscopy.[online] Available at: https://static.horiba.com/fileadmidHoriba/App1icatiodMateria1slMateria-l R esearchl2D- M a t e r i a l s / N u r n b e r - o f - l a y e r ~ - o f - M O S 2 ~ d e t e-S~ p ectroscopy.pdf [Accessed on 29 March 20191. 131. Li, H., Wu, J., Yin, Z. and Zhang, H., 2014. Preparation and Applications of Mechanically Exfoliated Single-layer and Multilayer MoSz and WSe2 Nanosheets. Accounts of Chemical Research, 47, pp. 1067-1075. 132. Li, H.B., Yu, M.H., Wang, F.X., Liu, P., Liang, Y., Xiao, J., Wang, C.X., Tong, Y.X. and Yang, G.W., 2013. Amorphous Ni(OH)2 Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials. Nature Communications, 4, pp. 1894-1900. 133. Li, J., Cheng, X., Shashurin, A. and Keidar M., 2012. Review of Electroche~nicaCl apacitors based on CNTs and Graphene. Graphene, 1, pp. 1-13. 134. Li, M., Liu, D., Wei, D., Song, X., Wei, D. and Wee, A.T.S., 2016. Controllable Synthesis of Graphene by Plasma-Enhanced CVD and its Related Applications. Advanced Science, 3, pp. 1600003-12000025. 135. Li, Q., Guo, X., Zhang, Y., Zhang, W., Ge, C., Zhao, L., Wang, X., Zhang, H., Chen, J., Wang, Z. and Sun, L., 2017. Porous Graphene Paper for Supercapacitor Applications. Journal of Materials Science and Technology, 33, pp. 793-799. 136. Li, X., Zhang, C., Xin, S., Yang, Z., Li, Y., Zhang, D. and Yao, P., 2016. Facile Synthesis of MoS2/rGO@PANI for High-Performance Supercapacitors. ACSApplied of Material Interfaces, 8, pp. 21373-21380. 137. Li, Y.W., Yin, Z.L., Yao, J.H., Zhao, W.M., Liu, C.J. and Zhong, S.K., 2010. Electrochemical Performance of Ni(OH)2 Doped with MWCNTs. Transactions of Nonferrous Metals Society of China, 20, pp. s249-s252. 138. Liu, C., Yu, Z., Neff, D., Zhamu, A. and Jang, B.Z., 2010. Graphene based Supercapacitor with an Ultrahigh Energy Density. Nano Letters, 10, pp. 48634868. 139. Liu, F., Song, S., Xue D. and Zhang, H., 2012. Folded Structured Graphene Paper for High Performance Electrode Materials. Advanced Materials, 24, pp. 1089-1094. 140. Liu, H., He, P., Li, Z., Liu, Y. and Li, J., 2006. A Novel Ni-based Mixed Rare-Earth 021AC Supercapacitor using RT Ionic Liquid Electrolyte. Electrochimica Acta, 5 1, pp. 1925-1 93 1. 141. Liu, J., Cui, L. and Losic, D., 2013. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomaterialia, 9, pp. 9243-9257. 142. Liu, J., Wang, B., Mirri, F., Pasquali, M. and Motta, N., 2015 High Performance Solid-State Supercapacitors based on Compressed Graphene Foam. RSCAdvances, 5, pp. 84836-84839. 143. Liu, T., Finn, L., Yu, M., Wang, H., Zhai, T., Lu, X., Tong, Y. and Li, Y., 2014. PAN1 and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 14, pp. 2522-2527. 144. Liu, Y., Zeng, Z. and Wei, J., 2016. Frontiers in Nano-Architectured Carbon-Metal Oxide Electrodes for Supercapacitance Energy Storage: A Review. Frontiers in Nanoscience and Nanotechnology, 2, pp. 78-85. 145. Lu, Q., Chen, J.G., Xiao, J.Q., Lu, Q., Chen, J.G and Xiao, J.Q., 2013a. Nanostructured Electrodes for High Performance Pseudocapacitors. Angewandte Chemie International Edition in English, 52, pp. 1882-1889. 146. Lu, X., Yu, M., Zhai, T., Wang, G., Xie, S., Liu, T., Liang, C., Tong, Y. and Li, Y., 2013b. High Energy Density Asymmetric Quasi-Solid-state Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters, 13(6), pp. 2628-2633. 147. Lu, X.F., Chen, X.Y., Zhou, W., Tong, Y.X. and Li, G.R., 2015. a-Fe203@ PAN1 Coreshell Nanowire Arrays as Negative Electrodes for ASCs. ACS Applied Material Interfaces, 7, pp. 14843-14850. 148. Lv, R., Robinson, J.A., Schaak, R.E., Sun, D., Sun, Y., Mallouk, T.E. and Terrones, M., 2015. TMDs and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 48, pp. 56-64. 149. Ma, H., He, J., Xiong, D.B., Wu, J., Li, Q., Dravid, V. and Zhao, Y., 2016. Nickel Cobalt Hydroxide@rGO Hybrid Nanolayers for High Performance ASCs with Remarkable Cycling Stability. ACS Applied Materials and Interfaces, 8, pp. 1992-2000. 150. Ma, S.B., Ahn, K.Y., Lee, E.S., Oh, K.H. and Kim, K.B., 2007. Synthesis and Characterization of Manganese Dioxide Spontaneously Coated on CNTs. Carbon, 45(2), pp. 375-382. 151. Ma, W., Nan, H., Gu, Z., Geng, B. and Zhang, X., 2015. Superior Performance ASCs Based on ZnC0204@Mn02 Core-shell Electrode. Journal of Materials Chemistry A, 3(10), pp. 5442-5448. 152. Maarof, H.I., Daud, W.M.A.W. and Aroua, M.K., 2017. Effect of Varying the Amount of Binder on The Electrochemical Characteristics of Palm Shell AC. IOP Conz Series: Materials Science and Engineering, 210, pp. 01201 1-012020. 153. Manaf, N.S.A., Bistarnam, M.S.A. and Azam, M.A., 2013. Development of High Performance EC: A Systematic Review of Electrode Fabrication Technique based on Different Carbon Materials. ECS Journal of Solid State Science and Technology, 2, pp. M3101-M3119. 154. Manoharan, A,, Tian R. and Ang, S.S., 2016. MoS21rGO-based 2D Nancoinposites for Boosting the Energy Density of EDLC. MRS Advances, 1(22), pp. 1619-1624. 155. Masikhwa, T.M., Madito, M.J., Bello, A,, Dangbegnon, J.K. and Manyala, N., 2017. High Performance Asymmetric Supercapacitor Based On MoS2lGraphene Foam and Activated Carbon froin Expanded Graphite. Journal of Colloid and Interface Science, 488, pp. 155-165. 156. McCloskey, B.D., 2015. Expanding the Ragone Plot: Puslung the Limits of Energy Storage. The Journal of Physical Chemistry Letters, 6, pp. 3592-3593. 157. Miao, H., Hu, X., Sun, Q., Hao, Y., Wu, H., Zhang, D., Bai, J., Liu, E., Fan, J. and Hou, X., 2016, Hydrothennal Synthesis of MoS2 Nanosheets Films: Microstructure and Fonnation Mechanism Research. Materials Letters, 166, pp. 12 1-1 24. 158. Mohainmadi, S., Kolahdouz, Z., Darbari, S., Mohajerzadeh, S. and Masouini, N., 2013. Graphene Fonnation by Unzipping CNTs using a Sequential Plasma Assisted Processing. Carbon, 52, pp. 451463. 159. Muralikrishna, S., Manjunath, K., Samrat, D., Reddy, V., Rarnakrishnappa, T. and Nagaraju,D.H., 2015. Hydrothennal Synthesis of 2D MoSz Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. RSC Advances, 5, pp. 89389-89396. 160. Nippon-Chemi-Con, 2010. Stanley Electric and Tamura announce: Development of "Super CaLeCS", An Environment-Friendly EDLC-Powered LED Street Lamp. [online] Available at: http:Nwww.chemi-con.co.jp/e/companylpdf20100330-1 .pdf [Accessed on 24 July 201 81. 161. Nolan, H., Mendoza-Sanchez, B., Kumar, N.A., McEvoy, N., O'Brien, S., Nicolosi, V. and Duesberg, G.S., 2014. Nitrogen Doped rGO Electrodes for Electrochemical Supercapacitors. Physical Chemistry Chemical Physics, 16, pp. 2280-2284. 162. Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K., 2012. A Roadinap for Graphene. Nature, 490(7419), pp. 192-200. 163. O'Connor, D.J., Sexton, B.A. and Smart, R.S.C., 2003. Surface Analysis Methods in Materials Science. New York: Springer Publishers. 164. Oh, J.Y., Lee, J.H., Han, S.W., Chae, S.S., Bae, E.J., KangY.H., Choi, W.J., Cho, S.Y., Lee, J.O., Baik, H.K. and Lee, T.I., 2016. Chemically Exfoliated TMDs Nanosheet-based Wearable Thermoelectric Generators. Energy and Environmental Science, 9, pp. 1696-1705. 165. Ottaviano, L., Palleschi, S., Perrozzi, F., D'Olimpio, G., Priante, F., ~onarelliM, ., Benassi, P., Nardone, M., Gonchigsuren, M. and Gombosuren, M., 2017. Mechanical Exfoliation and Layer Number Identification of MoS2 Revisited. 20 Materials, 4, pp. 045013-045027. 166. Pagketanang, T., Artnaseaw, A,, Wongwicha, P. and Thabuot, M., 2015. Microporous AC from KOH-Activation of Rubber Seed-Shells for Application in Capacitor Electrode. Energy Procedia, 79, pp. 651-656. 167. Pan, H., Li, J. and Feng, Y., 2010. CNTs for Supercapacitor. Nanoscale Research Letters, 5(3), pp. 654-668. 168. Pan, H., Poh, C.K., Feng, Y.P. and Lin, J., 2007. Supercapacitor Electrodes from Tubes-in- Tube Carbon Nanostructures. Chemistry ofMaterials, 19(25), pp. 6120-6125. 169. Pang, H., Ee, S.J., Dong, Y., Dong, X. and Chen, P., 2014. TiN@VN Nanowire Arrays on 3D Carbon for High Performance Supercapacitors. ChemElectroChem, 1(6), pp. 1027- 1030. 170. Park, S. and Ruoff, R.S., 2009. Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4(4), pp. 217-224. 171. Patake, V.D. and Lokhande, C.D., 2008. Chemical Synthesis of Nano-Porous Ru02 Thin Filins for Supercapacitor Application. Applied Surface Science, 254(9), pp. 2820-2824. 172. Patil, U.M., Kulkarni, S.B., Jamadade, V.S. and Lokhande, C.D., 2011. Chemically Synthesized Hydrous Ru02 Thin Filins for Supercapacitor Application. Journal of Alloys and Compounds, 509(5), pp. 1677-1682. 173. Patel, P., 2010. A Battery-ultracapacitor Hybrid. [online] Available at: http://www.techologyreview.com/news/417O53/a-batterltracapacitor-hybrid/ [Accessed on 24 July 20181. 174. Patil, U.M.,Nam, M.S.,Kang, S., Sohn, J.S., Sim,H.B., Kang, S. and Jun, S.C., 2016. Fabrication of Ultra-High Energy and Power Asymmetric Supercapacitors Based On Hybrid 2D MoSzIGO Composite Electrodes: A Binder Free Approach. RSCAdvances, 6, pp. 4326143271. 175. Patil, U.M., Sohn, J.S., Kulkarni, S.B., Park, H.G., Jung, Y., Gurav, K.V., Kim, J.H. and Jun S.C., 2014. A Facile Synthesis of Hierarchical a-MnOz Nanofibers on 3DG Foam for Supercapacitor Application. Materials Letters, 119, pp. 135-139. 176. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P. and Simon, P., 2010. Ultrahigh-Power Micrometre-Sized Supercapacitors based on Onion-Like Carbon. Nature Nanotechnology, 5, pp. 651-654. 177. Pell, W.G. and Conway, B.E., 2001. Voltainmetry at a de Levie Brush Electrode as a Model for Electrochemical Supercapacitor Behaviour. Journal ofElectroanalytica1 Chemistry, 500, pp. 121-133. 178. Phain, K.C., McPhail, D.S., Wee A.T.S. and Chua, D.H.C., 2017. Amorphous MoS2 on GrapheneCNT Hybrids as Supercapacitor Electrode Materials. RSCAdvances, 7, pp. 6856- 6864. 179. Pilon, L., Wang, H. and d'Entremont, A., 2015. Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in EDLCs. Journal of The Electrochemical Society, 162(5), pp. A5158-A5178. 180. Ping, Y., Gong, Y., Fua, Q. and Pan, C., 2017. Preparation of 3DG Foam for High Performance Supercapacitors. Progress in Natural Science: Materials International, 27, pp. 177-181. 181. Pint, C.L., Nicholas, N.W., Xu, S., Sun, Z., Tour, J.M., Schmidt, H.K., Gordon, R.G. and Hauge, R.H., 201 1.3D Solid-State Supercapacitors from Aligned SWCNT Array Templates. Carbon, 49, pp. 4890-4897. 182. Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S., 2011. Graphene-based Polymer Nanocomposites, Polymer, 52, pp. 5-25. 183. Pujari, R.B., Lokhande, A.C., Shelke, AR., Kim, J.H. and Lokhande, C.D., 2017. Chemically Deposited Nano Grain Composed MoS2 Thin Films for Supercapacitor Application. Journal of Colloid and Interface Science, 496, pp. 1-7. 184. Pumera, M., 2010. Graphene-based Nanomaterials and Their Electrocheinistry. Chemical Society Reviews, 39(1 I), pp. 41464157. 185. Pumera, M., Sofer, 2. and Ambrosia, A., 2014. Layered TMDs for Electrochemical Energy Generation and Storage Journal of Materials Chemistry A, 2, pp. 8981-8987. 186. Qian, W., Sun, F., Xu, Y., Qiu, L., Liu, C., Wang S. and Yan, F., 2014. Human Hair-Derived Carbon Flakes for Electrochemical Supercapacitors. Energy and Environmental Science, 7, pp. 379-386. 187. Qie, L., Chen, W.M., Wang, Z.H., Shao, Q.G., Li, X., Yuan, L.X., Hu, X.L., Zhang, W.X. and Huang, Y.H., 2012. Nitrogen doped Porous Carbon Nanofiber Webs as Anodes for LIBs with a Superhigh Capacity and Rate Capability. Advanced Materials, 24(15), pp. 2047- 2050. 188. Qu, J., Li, Y., Lv, S., Gao, F., Geng, C. and Wu, M., 2015. Dense 3DG Macrofonns with Nanotuned Pore Sizes for High Performance Supercapacitor Electrodes, The Journal of Physical Chemistry C, 119, pp. 24373-24380. 189. Qu, Q., Zhang, P., Wang, B., Chen, Y., Tian, S., Wu, Y. and Holze, R., 2009. Electrochemical Performance of MnOz Nanorods in Neutral Aqueous Electrolytes as a Cathode for ASCs. The Journal of Physical Chemistry C, 113(3 I), pp. 14020-14027. 190. Qu, Q.T., Liu, L.L., Wu, Y.P. and Holze, R., 2013. Electrochemical Behavior of Vz05.0.6 Hz0 Nanoribbons in Neutral Aqueous Electrolyte Solution. Electrochimica Acta, 96, pp. 8- 12. 191. Railway-Gazette, 2012. Trams to Harvest Regenerative Braking. [online] Available at: http://www.energyharvestingiouma1.com/artic1es/tra1ns-toharvest-regenerative-br&ing- 00004644.asp [Accessed on 9 August 20181. 192. Ramachandran, R., Saranya, M., Velmumgan, V., Raghupathy, B.P.C., Jeong, S., K. and Grace, A.N., 2015. Effect of Reducing Agent on Graphene Synthesis and its Influence on Charge Storage Towards Supercapacitor Applications. Applied Energy, 153, pp. 22-3 1. 193. Ramya, R., Sivasubramanian, R. and Sangaranarayanan, M.V., 2013. Conducting Polymersbased Electrochemical Supercapacitors-Progress and Prospects. Electrochimica Acta, 101, pp. 109-129. 194. Rangel, N.L., Sotelo, J.C. and Seminario, J.M., 2009. Mechanism of CNTs Unzipping into Graphene Ribbons. The Journal of Chemical Physics, 13 1 (3), pp. 03 11 05-03 1'108. 195. Ren, Z., Li, J., Ren, Y., Wang, S., Qiu, Y. and Yu, J., 2016. Large-scale Synthesis of Hybrid Metal Oxides Through Metal Redox Mechanism for High-Perfonnance Pseudocapacitors. ScientiJic Reports, 6, pp. 20021-20030. 196. RoldAN, S., Granda, M., MeneNdez, R., Santamaria, R. and Blanco, C., 201 1. Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. The Journal ofPhysica1 Chemistry C, 11 5, pp. 17606-1 761 1. 197. Saghafi, M., Mahboubi, F., Mohajerzadeh, S. and Holze, R., 2014. Preparation of VACNTs and Their Electrochemical Perfonnance in Supercapacitors. Synthetic Metals, 195, pp. 252- 259. 198. Saravanakumar, B., Purushothaman, K.K. and Muralidharan, G., 2015. High Perfonnance Supercapacitor Based on Carbon Coated V205 Nanorods. Journal of Electroanalytical Chemistry, 758, pp. 11 1-1 16. 199. Sato, S., 2015. Graphene for Nanoelectronics. Japanese Journal ofApplied Physics, 54, pp.040102-0401 13. 200. Sha, C., Lu, B., Mao, H., Cheng, J., Pan, X., Lu, J. and Ye, Z., 2016. 3D Ternary Nanocoinposites of MoS2PANiIrGO Aerogel for High Performance Supercapacitors. Carbon, 99, pp. 26-34. 201. Shao, Y., Wang, H., Zhang, Q. and Li, Y., 2013. High-perfonnance Flexible ASCs Based on 3D Porous GrapheneIMnOz Nanorod and GrapheneIAg Hybrid Thin-Film Electrodes. Journal of Materials Chemistry C, 1(6), pp. 1245-1251. 202. Sharma, P. and Bhatti, T., 2010. A Review on Electrochemical Double-Layer Capacitors. Energy Conversion and Management, 5 1(12), pp. 2901-2912. 203. Shen, J., Dong, P., Baines, R., Xu, X., Zhang, Z., Ajayan, P.M. and Ye, M., 2016. Controlled Synthesis & Comparison of N~CO~S~IGI~D-TTMerDna ry Nanocomposites for High- Performance SCs. Chemical Communications, 52, pp. 9251-9254. 204. Sheng, L., Jiang, L., Wei, T. and Fan, Z., 2016. High Volumetric Energy Density ASCs Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures. Small, 12, pp. 5217-5227. 205. Shi, Y., Wang, Y., Wong, J.I., Tan, A.Y.S., Hsu, C.L., Li, LJ., Lu, YC. and Yang, H.Y., 2013. Self-assembly of Hierarchical MoSxICNT Nanocomposites (2,x,3): Towards High Perfonnance Anode Materials for LIBs. ScientiJic Reports, 3, pp. 21 69-2176. 206. Shidpour, R., Vosoughi, M., Magl~soudi, H. and Silnchi, A,, 2016. A General Two-Step CVD Procedure to Synthesize Highly Crystalline TMDs: A Case Study of MoS2. Materials Research Bulletin, 76 pp. 473-478. 207. Signorelli, R., Ku, D.C., Kassakian, J.G. and Schindall, J.E., 2009. Electrochemical Double- Layer Capacitors using CNT Electrode Structures. Proceedings of the IEEE, 97, pp. 1837- 1847. 208. Simon, P. and Gogotsi, Y., 2008. Materials for Electrocl~emical Capacitors. Nature Materials, 7 (1 I), pp. 845-854. 209. Simon, P. and Burke, A,, 2008. Nanostructured Carbons:Double-Layer Capacitance and More. Electvochemical Society Interface, 17(1), pp. 3844. 210. Singh, A. and Chandra, A,, 2015. Significant Perfonnance Enhancelnent in ASCs Based on Metal Oxides, CNTs and Neutral Aqueous Electrolyte. Scientific Reports, 5, pp. 15551- 15561. 211. Singh, A. and Chandra, A,, 2016. Enhancing Specific Energy and Power in ASCs-A Synergetic Strategy Based on the use of Redox Additive Electrolytes. Scientzjic Reports, 6, pp. 25793-25805. 212. Singh, S.K., Dhavale, V.M., Boukherroub, R., Kurungot, S and Szunerits, S., 2017. N-doped Porous rGO as an Efficient Electrode Material for High Perfonnance Flexible Solid-State Supercapacitor. Applied Materials Today, 8, pp. 141-149. 213. Sirat, M.S., Ismail, E., Punvanto, H., Azam, M.A. and Ani, M.H., 2017. Growth Conditions of Graphene Grown in CVD. Sains Malaysians, 46, pp. 1033-1038. 214. Snook, G.A., Kao, P. and Best, A.S., 201 1. Conducting-polymer-based Supercapacitor Devices and Electrodes. Journal ofpower Sources, 196, pp. 1-12. 215. Sowmya and Selvakuinar, M., 2018. Multilayered Electrode Materials Based on PANIIAC Composites for Supercapacitor Applications. International Journal ofHydrogen Energy, 43, pp. 40674080. 216. Song, H.K., Hwang, H.Y., Lee, K.H and Dao, L.H., 2000. The Effect of Pore Size Distribution on the Frequency Dispersion of Porous Electrodes. Electrochimica Acta, 45, pp. 2241-2257. 217. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S., 2006. Graphene-based Coinposite Materials. Nature, 442(7100), pp. 282-286. 218. Stoller, M.D. and Ruoff, R.S., 2010. Best Practice Methods for Detennining an Electrode Material's Perfonnance for Ultracapacitors. Energy and Environmental Science, 3, pp. 1294-1301. 219. Sui, Z.Y., Meng, Q.H., Li, J.T., Zhu, J.H., Cui, Y. and Han, B.H., 2014. High Surface Area Porous Carbons Produced by Steam Activation of Graphene Aerogels. Journal of Materials Chemistry A, 2, pp. 9891-9898. 220. Sumboja, A,, Foo, C.Y ., Wang, X. and Lee, P.S., 2013. Large Areal Mass, Flexible and Free- Standing rGOJMn02 Paper for ASC Device. Advanced Materials, 25, pp. 2809-28 15. 221. Sun, G., Liu, J., Zhang, X., Wang, X., Li, H., Yu, Y., Huang, W., Zhang, H. and Chen, P., 2014a. Fabrication of Ultralong Hybrid Microfibers froin Nanosheets of rGO and TMDs and their Application as Supercapacitors. Angewandte Chemie International Edition, 53, pp. 12576-12580. 222. Sun, G., Zhang, X., Lin, R., Yang, J., Zhang, H. and Chen, P., 2015. Hybrid Fibers Made of MoSz, rGO, and MWCNTs for Solid State, Flexible, ASCs. Angewandte Chemie International Edition, 54, pp. 46514656. 223. Sun, L., Tian, C., Fu, Y., Yang, Y., Yin, J., Wang, L. and Fu, H., 2014b. Nitrogen-doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chemistry A European Journal, 20, pp. 56&574. 224. Sun, T., Li, Z., Liu, X., Ma, L., Wang, J. and Yang, S., 2016. Facile Construction of 3DGIMoS2 Composites as Advanced Electrode Materials for Supercapacitors. Journal of Power Sources, 331, pp. 180-188. 225. Sun, W., Zheng, R. and Chen, X., 2010. Symmetric Redox Supercapacitor based on Micro- Fabrication with 3D Polypyrrole Electrodes. Journal of Power Sources, 2010, 195(20), pp. 7120-7125. 226. Suzuki, S. and Yoshimura, M., 2017. Chemical Stability of Graphene Coated Silver Substrates for Surface-Enhanced Raman Scattering. Scientzj?~R eports, 7, pp. 14851-14857. 227. Tedstone, AA., Lewis, D.J. and O'Brien, P., 2016. Synthesis, Properties, and Applications of Transition Metal-Doped Layered TMDs. Chemistvy ofMaterials, 28, pp. 1965-1974. 228. Thampi, V.A., Nithiyanantham, U., Kumar, A.N., Martin, P., Bendavid, A. and Subramanian, B., 2018. Fabrication of Sputtered Titanium Vanadium Nitride (TiVN) Thin Films for Micro-supercapacitors. Journal of Materials Science: Materials in Electronics, 29(14), pp.12457-12465. 229. Thangappan, R., Kalaiselvain, S., Elayaperumal, A,, Jayavel, R., Arivanandhan, M., Karthikey, R. and Hayakawad., Y., 2016. Graphene Decorated with MoSz Nanosheets: A Synergetic Energy Storage Composite Electrode for Supercapacitor Applications. Dalton Transactions, 45, pp. 2637-2646. 230. Tiwary, C.S., Jawaji, B., Kumar, C., Mahapatra, D.R., Ozden, S., Ajayan, P.M. and Chattopadhyay, K., 201 5. Chemical-free Graphene by Unzipping CNTs using Cryo-Milling. Carbon, 89, pp. 217-224. 231. Tougaard, S., 2013. Surface Analysis-X ray photoelectron spectroscopy. In: Reedijk, J. (Ed.)Elsevier Reference Module in Chemistly, Molecular Sciences and Chemical Engineering. Walthain, MA: Elsevier. pp. 1-1 1. 232. Tsai, I.L., Cao, J., Fevrea, L.L., Wang, B., Todd, R., Dryfe, R.A.W. and Forsyth, A.J., 2017. Graphene-enhanced Electrodes for Scalable Supercapacitors. Electrochimica Acta, 257, pp. 372-379. 233. U1-Hamid, A,, Quddus, A,, Sariciinen, H., and Dafalla, H., 2015. Corrosion Behavior of Coarse- and Fine-Grain Ni Coatings Incorporating NaHzP04.HzO Inhibitor Treated Substrates. Materials Research, 18(1), pp. 20-26. 234. Uzunoglu, M. and Alam, MS., 2008. Modeling and Analysis of an FCIUC Hybrid Vehicular Power System Using a Novel-Wavelet-Based Load Sharing Algorithm. IEEE Transactions on Energy Conversion, 23(1), pp. 263-272. 235. Veeramalai, C.P., Li, F., Xu, H., Kim, T.W. and Guo, T., 2015. One Pot Hydrothermal Synthesis of Graphene Like MoSz Nanosheets for Application in High Performance LIBs. RSC Advances, 5, pp. 57666-57670. 236. Vickery, J.L., Patil, A.J. and Mann, S., 2009. Fabrication of GraphenePolymer Nanocomposites with Higher Order 3D Architectures. Advanced Materials, 21(21), pp. 2180-2184. 237. Vlad, A,, Singh, N., Rolland, J., Melinte, S., Ajayan, P.M. and Gohy, J.F., 2014. Hybrid Supercapacitor-Battery Materials for Fast Electrochemical Charge Storage. ScientiJic Reports, 4, pp. 43154321. 238. Vollmer, 2010. Lecture: Introduction into X-ray and UV Photoelectron Spectroscopy (XF'SLJPS). [online] Available at: http://staff.mbiberlin. de/hertel/ProMINT/MPSch/WS2010-11/Vollmer~WS~2010~0[2A.cpcdefss ed on 9 August 20181. 239. Vol'fkovich, Y.M. and Serdyuk, T.M., 2002. Electrochemical Capacitors. Russian Journal of Electrochemistry, 38(9), pp. 935-958. 240. Wald, M.L., 2013. Remote Controls, Without the AAA Batteries. [online] Available at: http://bits.b1ogs.nytimes.com/2013/09/24/remote-~0ntro1~~ith0~t-the-aaa-batt-e1 r-i0e s/? [Accessed on 9 August 20181. 241. Wang, B., Qin, Y., Tan, W., Tao, Y. and Kong, Y., 2017b. Smartly Designed 3D N-Doped Mesoporous Graphene for High-Performance Supercapacitor Electrodes. Electrochimica Acta, 241, pp. 1-9. 242. Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., Zhu, Y., Zhou, Q., Wu, Y. and Huang, W., 2017a. Latest Advances in Supercapacitors: From New Electrode Materials to Novel Device Designs. Chemical Society Reviews, 46, pp. 6816-6854. 243. Wang, G., Zhang, L. and Zhang, J., 2012a. A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews, 41(2), pp. 797-828. 244. Wang, G.X., Zhang, B.L., Yu, Z.L. and Qu, M.Z., 2005. Manganese OxideIMWNTs Composite Electrodes for Supercapacitors. Solid State Zonics, 176(11-12), pp. 1169-1 174. 245. Wang, H., Yoshio, M., Thapa, A.K. and Nakamura, H., 2007. Froin Symmetric AC/AC to Asymmetric ACIGraphite, a Progress in Electrochemical Capacitors. Journal of Power Sources, 169, pp. 375-380. 246. Wang, H., Lin, J. and Shen, Z.S., 2016b. PAN1 based Electrode Materials for Energy Storage and Conversion. Journal of Science: Advanced Materials and Devices, 1, pp. 225-255. 247. Wang, Q.H., Zadeh, K.K., Kis, A,, Coleman, J.N. and Strano, MS., 2012b. Electronics and Optoelectronics of 2D TMDs. Nature Nanotechnology, 7, pp. 699-712. 248. Wang, Y., Guo, J., Wang, T., Shao, J., Wang, D. and Yang Y.W., 2015. Mesoporous TMOs for Supercapacitors. Nanomaterials, 5, pp. 1667-1689. 249. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M. and Chen, Y., 2009. Supercapacitor Devices based on Graphene Materials. The Journal ofPhysica1 Chemistry C, 113, pp. 13103-13107. 250. Wang, Y., Song, Y. and Xia, Y., 2016a. Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications. Chemical Society Reviews, 45, pp. 5925-5950. 251. Wang, Z., Li, Z., Feng, J., Yan, S., Luo, W., Liu, J., Yu, T. and Zou, Z., 2014. MnOz Nanolayers on Highly Conductive Ti00.~4N0.4N6 anotubes for Supercapacitor Electrodes with High Power Density and Cyclic Stability. Physical Chemistry Chemical Physics, 16(18), pp. 8521-8528. 252. Wu, S., Chen, W. and Yan, L., 2014. Fabrication of a 3D MnOzIGraphene Hydrogel for High-Performance ASCs. Journal ofMaterials Chemistry A, 2, pp. 2765-2772. 253. Wu, Z.S., Pei, S., Ren, W., Tang, D., Gao, L., Liu, B., Li, F., Liu, C. and Chen, H.M., 2009. Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition. Advanced Materials, 21, pp. 1756-1760. 254. Wu, Z.S., Ren, W., Wang, D.W., Li, F., Liu, B. and Cheng, H.M., 2010. High-Energy Mn02 NanowireJGraphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano, 4(10), pp. 5835-5842. 255. Xia, C., Jiang, Q., Zhao, C., Beaujuge, P.M. and Alshareef, H.N., 2016. ASCs with Metallike Ternary Selenides and Porous Graphene Electrodes. Nano Energy, 24, pp. 78-86. 256. Xia, H., Hong, C., Li, B., Zhao, B., Lin, Z., Zheng, M., Savilov, S.V. and Aldoshin, S.M., 2015. Facile Synthesis of Hematite Quantum Dot!Functionalized Graphene Sheet Composites as Advanced Anode Materials for ASCs. Advanced Functional Materials, 25(4), pp. 627-635. 257. Xu, H., Hu, X., Yang, H., Sun, Y., Hu, C. and Huang, Y., 2015. Flexible Asymmetric Micro Supercapacitors Based on Biz03 and MnOz Nanoflowers: Larger Areal Mass Promises Higher Energy Density. Advanced Energy Materials, 5(6), pp. 1401882-1401888. 258. Xia, H., Lai, M. and Lu, L., 2010. Nanoflaky MnOzICNT Nanocoinposites as Anode Materials for LIBs. Journal ofMaten'als Chemistry, 20(33), pp. 6896-6902. 259. Xiao, W., Zhou, W., Feng, T., Zhang, Y., Liu H. and Tian, L., 2016. Siinple Synthesis of MoSzIrGO Composite Hollow Microspheres as Supercapacitor Electrode Material. Materials, 9, pp. 783-796. 260. Xie, B., Chen, Y., Yu, M., Sun, T., Lu, L., Xie, T., Zhang, Y. and Wu, Y., 2018. Hydrothermal Synthesis of Layered MoSz/N-Doped Graphene Hybrid with Enhanced Supercapacitor Performance. Carbon, 99, pp. 35-42. 261. Xie, B., Chen, Y., Yu, M., Zhang, S., Lu, L., Shu, Z. and Zhang, Y., 2016. Phosphoric Acidassisted Synthesis of Layered MoSzIGraphene Hybrids with Electrolyte Dependent Supercapacitive Behaviors. RSCAdvances, 6, pp. 89397-89406. 262. Xiong, G., He, P., Wang, D., Zhang, Q., Chen, T. and Fisher, T.S., 2016. Hierarchical Ni- Co Hydroxide Petals on Mechanically Robust Graphene Petal Foam for High Energy ASCs. Advanced Functional Materials, 26(30), pp. 5460-5470. 263. Yan, J., Fan, Z. Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L. and Wei, F., 2012. Advanced ASCs Based on Ni(0H)zlGraphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 22(12), pp. 2632-2641. 264. Yan, J., Wang, Q., Wei, T. and Fan, Z., 2014. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 4, pp. 1300816-1300858. 265. Yang, C., Chen, Z., Shakir, I., Xu, Y. and Lu, H., 2016 Rational Synthesis of Carbon Shell Coated PANIMoS2 Monolayer Composites for High-Performance Supercapacitors. Nano Research, 9(4), pp. 951-962. 266. Yang, M.H., Jeong, J.M., Huh, Y.S. and Choi, B.G., 2015. High-performance Supercapacitor based on 3D MoS2lGraphene Aerogel Composites. Composites Science and Technology, 121, pp. 123-128. 267. Yang, W., Ni, M., Ren, X., Tian, Y., Li, N., Su, Y. and Zhang, X., 2015. Graphene in Supercapacitor Applications. Current Opinion and Colloid Interface Science, 20, pp. 416- 428. 268. Yang, X., Cheng, C., Wang, Y., Qiu, L. and Li, D., 2013. Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science, 341(6145), pp. 534-537. 269. Yang, X., Niu, H., Jiang, H., Wang, Q. and Qu, F., 2016. High Energy Density All-Solid- State ASC based on MoSzIG Nanosheet and MnOzIG Hybrid Electrodes. Journal of Materials Chemistry A, 4, pp. 11264-1 1275. 270. Yang, X., Zhao, L. and Lian, J., 2017. Arrays of Hierarchical Nickel SulfidesIMoS~ Nanosheets Supported on CNTs Backbone as Advanced Anode Materials for ASC. Journal of Power Sources, 343, pp. 373-382. 271. Yassine, M. and Fabris, D., 2017. Performance of Commercially Available Supercapacitors. Energies, 10(9), pp. 1340-1351. 272. Yu, H., He, J., Sun, L., Tanaka, S. and Fugetsu, B., 2013. Influence of the Electrochemical Reduction Process on the Performance of Graphene-based Capacitors. Carbon, 5 1, pp. 94- 101. 273. Yu, M., Wang, Z., Han, Y., Tong, Y., Lu, X. and Yang, S., 2016. Recent Progress in The Development of Anodes for ASCs. Journal of Materials Chemistry A, 4, pp. 46344658. 274. Yu, Z., Tetard, L., Zhai, L. and Thomas, J., 2015. Supercapacitor Electrode Materials: Nanostmctures from 0 to 3 Dimensions. Energy and Environmental Science, 8(3), pp. 702- 730. 275. Yue, Y., Han, P., He, X., Zhang, K., Liu, Z., Zhang, C., Dong, S., Gu, L. and Cui, G., 2012. In Situ Synthesis of a GrapheneITitaniuin Nitride Hybrid Material with Highly Improved Performance for Lithium Storage. Journal ofMaterials Chemistry, 22(1l), pp. 4938-4943. 276. Yuwen, L., Xu, F., Xue, B., Luo, Z., Zhang, Q., Bao, B., Su, S., Weng, L., Huang, W. and Wang, L., 2014. General Synthesis of Noble Metal (Au, Ag, Pd, Pt) Nanocrystal Modified MoS2 Nanosheets and the Enhanced Catalytic Activity of Pd-MoS2 for Methanol Oxidation. Nanoscale, 6, pp. 5762-5769. 277. Zhang, C., Xie, Y., Zhao, M., Pentecost, A.E., Ling, Z., Wang, J., Long, D., Ling, L. and Qiao, W., 2014. Enhanced Electrochemical Performance of Hydrous Ru02/Mesoporous Carbon Nanocoinposites Via Nitrogen Doping. ACSApplied Materials & Interfaces, 6(12), pp. 9751-9759. 278. Zhang, H., Cao, G., Yang, Y. and Gu, Z., 2008. Comparison Between Electrochemical Properties of Aligned CNT Array and Entangled CNT Electrodes. Journal of The Electrochemical Society, 155(2), PP K19-K22. 279. Zhang, L.L. and Zhao, X.S., 2009. Carbon-based Materials as Supercapacitor Electrodes. Chemical Society Reviews, 38(9), pp. 2520-253 1. 280. Zhang, L.L., Zhao, S., Tian, X.N. and Zhao, X.S., 2010. Layered Graphene Oxide Nanostructures with Sandwiched Conducting Polyners as Supercapacitor Electrodes. Langmuir, 26(22), pp. 17624-17628. 281. Zhang, T., Zhang, F., Zhang, L., Lu, Y., Zhang, Y., Yang, X., Ma, Y. and Huang, Y., 2015. High Energy Density Li-Ion Capacitor Assembled with All Graphene-based Electrodes. Carbon, 92, pp. 106-1 18. 282. Zhang, X.H., Wang, C., Xue, M.Q., Lin, B.C., Ye, X. and Lei, W.N., 2016. Hydrothermal Synthesis and Characterization of Ultrathin MoS2 Nanosheets. Chalcogenide Letters, 13, pp. 27-34. 283. Zhang, Y., Cao, X., Li, Z. and Zhao, D., 2016. Co-Assembly of Functional Graphene and Multiwall CNTs for Supercapacitors by a Vertical Deposition Technique. Applied Physics A, 122, pp. 575-581. 284. Zhang, Y.X., Huang, M., Li, F., Wang, X.L. and Wen, Z.Q., 2014. One-pot Synthesis of Hierarchical Mn02-Modified Diatornites for Electrocheinical Capacitor Electrodes. Journal of Power Sources, 246, pp. 449456. 285. Zhang, Z., Chi, K., Xiao, F., and Wang, S., 2015. Advanced Solid-State ASCs Based on 3D GrapheneIMnOz and GrapheneIPolypyrrole Hybrid Architectures. Journal of Materials Chemistry A, 3, pp. 12828-12835. 286. Zliao, M., Xiong, D.B., Tan, Z., Fan, G., Guo, Q., Guo, C., Li, Z. and Zhang, D., 2017. Lateral Size Effect of Graphene on Mechanical Properties of Alulniniuln Matrix Nanolalnillated Composites. Scriptn Mc~terialin,1 39, pp. 44-48. 287. Zhong, C., Deng, Y., Hu, W., Qiao, J., Zliang, L. and Zliang, J., 2015. A Review of Electrolyte Materials and Coinpositions for Electroclieinical Supercapacitors. Chernical Society Reviews, 44, pp. 7484-7539. 288. Zhou, C., Zhang, Y., Li, Y. and Liu, J., 2013. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous ASC. Nano Letters, 13, pp. 2078-2085. 289. Zhou, R., Han, C.J. and Wang, X.M., 2017. Hierarchical MoSz-Coated 3DG Network for Enhanced Supercapacitor Perfonnances. Journal ofpower Sources, 352, pp. 99-1 10. 290. Zhou, S., Xu, J., Xiao, Y., Zhaon, N. and Wong, C. P., 2015. Low-temperature Ni Particle- Teinplated CVD Growth of Curved Graphene for Supercapacitor Applications. Nano Energy, 13, pp. 458-466. 291. Zhu, Z.Z., Wang, G.C., Sun, M.Q., Li, X. W. and Li, C.Z., 2011. Fabrication and Electroche~nical Characterization of PAN1 Naiiorods Modified with Sulfonated CNTs for Supercapacitor Applications. Electrochimica Acta, 56(3), pp. 1366-1372.