Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine

Carbon fiber reinforced composite materials are used in a variety of engineering applications due to their significant properties. Armor steel composites are used in areas of application such as military vehicles, tanks, cars, etc. Currently, composites are used to replace conventional metallic mate...

Full description

Saved in:
Bibliographic Details
Main Author: Ali Al-Baiti, Mohammed Hasan
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/24925/1/Influence%20Of%20Machining%20Parameters%20On%20Surface%20Roughness%20And%20Delamination%20Of%20Hole%20In%20Drilling%20Of%20Cfrp%20Composites%20With%20Ultrasonic%20Machine.pdf
http://eprints.utem.edu.my/id/eprint/24925/3/Influence%20Of%20Machining%20Parameters%20On%20Surface%20Roughness%20And%20Delamination%20Of%20Hole%20In%20Drilling%20Of%20Cfrp%20Composites%20With%20Ultrasonic%20Machine.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.24925
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Kasim, Mohd Shahir

topic T Technology (General)
TJ Mechanical engineering and machinery
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Ali Al-Baiti, Mohammed Hasan
Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine
description Carbon fiber reinforced composite materials are used in a variety of engineering applications due to their significant properties. Armor steel composites are used in areas of application such as military vehicles, tanks, cars, etc. Currently, composites are used to replace conventional metallic materials in a wide range of industries, including aerospace, aircraft, and defense, which require high strength- to- weight and stiffness- to- weight structural materials. Due to their high mechanical properties, CFRP composites are used in fairings, passenger compartments, and storage room doors. Of all the processing operations, drilling is the most commonly used operation. However, the drilling of these composite materials, regardless of the area of application, can be considered a critical operation due to their tendency to delaminate when mechanically stressed. It is therefore important to understand the drilling behavior by conducting a large number of drilling experiments and by screening drilling parameters such as feed rate, spindle speed, ultrasonic and with or without using submersible. These composites provide corrosion resistance. The influence of machining parameters on surface roughness and quality of hole in the drilling of CFRP composites with an ultrasonic machine is investigated in detail
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Ali Al-Baiti, Mohammed Hasan
author_facet Ali Al-Baiti, Mohammed Hasan
author_sort Ali Al-Baiti, Mohammed Hasan
title Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine
title_short Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine
title_full Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine
title_fullStr Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine
title_full_unstemmed Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine
title_sort influence of machining parameters on surface roughness and quality of hole in drilling of cfrp composites with ultrasonic machine
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Manufacturing Engineering
publishDate 2019
url http://eprints.utem.edu.my/id/eprint/24925/1/Influence%20Of%20Machining%20Parameters%20On%20Surface%20Roughness%20And%20Delamination%20Of%20Hole%20In%20Drilling%20Of%20Cfrp%20Composites%20With%20Ultrasonic%20Machine.pdf
http://eprints.utem.edu.my/id/eprint/24925/3/Influence%20Of%20Machining%20Parameters%20On%20Surface%20Roughness%20And%20Delamination%20Of%20Hole%20In%20Drilling%20Of%20Cfrp%20Composites%20With%20Ultrasonic%20Machine.pdf
_version_ 1747834098025496576
spelling my-utem-ep.249252021-09-29T09:55:53Z Influence Of Machining Parameters On Surface Roughness And Quality Of Hole In Drilling Of CFRP Composites With Ultrasonic Machine 2019 Ali Al-Baiti, Mohammed Hasan T Technology (General) TJ Mechanical engineering and machinery Carbon fiber reinforced composite materials are used in a variety of engineering applications due to their significant properties. Armor steel composites are used in areas of application such as military vehicles, tanks, cars, etc. Currently, composites are used to replace conventional metallic materials in a wide range of industries, including aerospace, aircraft, and defense, which require high strength- to- weight and stiffness- to- weight structural materials. Due to their high mechanical properties, CFRP composites are used in fairings, passenger compartments, and storage room doors. Of all the processing operations, drilling is the most commonly used operation. However, the drilling of these composite materials, regardless of the area of application, can be considered a critical operation due to their tendency to delaminate when mechanically stressed. It is therefore important to understand the drilling behavior by conducting a large number of drilling experiments and by screening drilling parameters such as feed rate, spindle speed, ultrasonic and with or without using submersible. These composites provide corrosion resistance. The influence of machining parameters on surface roughness and quality of hole in the drilling of CFRP composites with an ultrasonic machine is investigated in detail 2019 Thesis http://eprints.utem.edu.my/id/eprint/24925/ http://eprints.utem.edu.my/id/eprint/24925/1/Influence%20Of%20Machining%20Parameters%20On%20Surface%20Roughness%20And%20Delamination%20Of%20Hole%20In%20Drilling%20Of%20Cfrp%20Composites%20With%20Ultrasonic%20Machine.pdf text en public http://eprints.utem.edu.my/id/eprint/24925/3/Influence%20Of%20Machining%20Parameters%20On%20Surface%20Roughness%20And%20Delamination%20Of%20Hole%20In%20Drilling%20Of%20Cfrp%20Composites%20With%20Ultrasonic%20Machine.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=118166 mphil masters Universiti Teknikal Malaysia Melaka Faculty of Manufacturing Engineering Kasim, Mohd Shahir 1. Altin Karataş, M. and Gökkaya Kiliçkap, E., Yardimeden, A., & Çelik, Y. H. (2015). Investigation of experimental study of end milling of CFRP composite. Science and Engineering of Composite Materials, 22(1), 89–95. https://doi.org/10.1515/secm-2013-0143 2. Ishida, T., Noma, K., Kakinuma, Y., Aoyama, T., Hamada, S., Ogawa, H., & Higaino, T. (2014). New production technologies in aerospace industry - 5th machining innovations conference (MIC 2014) helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen. Procedia CIRP, 24(C), 13–18. https://doi.org/10.1016/j.procir.2014.07.139 3. Ramulu, M., & Arola, D. (1995). Orthognal cutting mechanism of graphite/epoxy composite. Part II: Multi-directional laminate. 35(12), 1639–1648. 4. Kuo, K. L., & Tsao, C. C. (2012). Rotary ultrasonic-assisted milling of brittle materials. Transactions of Nonferrous Metals Society of China (English Edition), 22(SUPPL.3), s793–s800. https://doi.org/10.1016/S1003-6326(12)61806-8 5. Ning, F., Wang, H., Hu, Y., Cong, W., Zhang, M., & Li, Y. (2017). Rotary Ultrasonic Surface Machining of CFRP Composites: A Comparison with Conventional Surface Grinding. Procedia Manufacturing, 10, 557–567. https://doi.org/10.1016/j.promfg.2017.07.049 6. Automation, H. (n.d.). haas CNC. Retrieved from https://www.haascnc.com/ 7. HAL Tejas. (n.d.). tejas. Retrieved from http://www.tejas.gov.in/technology/composite_materials.html 8. CHANDRAMOHAN, D. and B. M. (2012). Machining of composites. Academic Journal of Manufacturing Engineering, 12(3), 1–10. 9. Lance & Shield. (n.d.). defense update. Retrieved from https://defense-update.com/20051025_armor-principles.html 10. Huda, A. H. N. F., Ascroft, H., & Barnes, S. (2016). Machinability Study of Ultrasonic Assisted Machining (UAM) of Carbon Fibre Reinforced Plastic (CFRP) with Multifaceted Tool. Procedia CIRP, 46, 488–491. https://doi.org/10.1016/j.procir.2016.04.041 11. Zarif Karimi, N., Heidary, H., & Minak, G. (2016). Critical thrust and feed prediction models in drilling of composite laminates. Composite Structures, 148(December 2017), 19–26. https://doi.org/10.1016/j.compstruct.2016.03.059 12. Bosco, M. A. J., Palanikumar, K., Prasad, B. D., & Velayudham, A. (2013). Influence of machining parameters on delamination in drilling of GFRP-armour steel sandwich composites. Procedia Engineering, 51(NUiCONE 2012), 758–763. https://doi.org/10.1016/j.proeng.2013.01.108 13. Soo, S. L., Shyha, I. S., Barnett, T., Aspinwall, D. K., & Sim, W. M. (2012). Grinding performance and workpiece integrity when superabrasive edge routing carbon fibre reinforced plastic (CFRP) composites. CIRP Annals - Manufacturing Technology, 61(1), 295–298. https://doi.org/10.1016/j.cirp.2012.03.042 14. Altin Karataş, M., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318–326. https://doi.org/10.1016/j.dt.2018.02.001 15. Miller, J., Eneyew, E. D., & Ramulu, M. (2013). Machining and drilling of carbon fiber reinforced plastic (CFRP) composites. SAMPE Journal, 49(2), 36–46. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84874832145&partnerID=40&md5=785f41b33a1b636227b7dc5c1aee6e12 16. Wei, Y., An, Q., Ming, W., & Chen, M. (2016). Effect of drilling parameters and tool geometry on drilling performance in drilling carbon fiber-reinforced plastic/titanium alloy stacks. Advances in Mechanical Engineering, 8(9), 1–16. https://doi.org/10.1177/1687814016670281 17. Machining carbon fibre materials Content. (n.d.). Solutions. 18. Park, K.-H., Hong, Y.-H., Kim, K.-T., Lee, S.-W., Choi, H.-Z., & Choi, Y.-J. (2014). Understanding of Ultrasonic Assisted Machining with Diamond Grinding Tool. Modern Mechanical Engineering, 04(01), 1–7. https://doi.org/10.4236/mme.2014.41001 19. Koboevic, N., Jurjevic, M., & Koboevic, Z. (2012). Influence of Cutting Parameters on Thrust Force, Drilling Torque and Delamination During Drilling of Carbon Fibre Reinforced Composites. Tehnicki Vjesnik-Technical Gazette, 19(2), 391–398. 20. Altin Karataş, M., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318–326. https://doi.org/10.1016/j.dt.2018.02.001 21. Voss, R., Henerichs, M., & Kuster, F. (2016). CIRP Annals - Manufacturing Technology Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics ( CFRP ). CIRP Annals - Manufacturing Technology, 65(1), 137–140. https://doi.org/10.1016/j.cirp.2016.04.001 22. Voss, R., Seeholzer, L., Kuster, F., & Wegener, K. (2017). Cutting Process Tribometer Experiments for Evaluation of Friction Coefficient Close to a CFRP Machining Operation. Procedia CIRP, 66, 204–209. https://doi.org/10.1016/j.procir.2017.03.225 23. Chen, Y., Liang, Y., Xu, J., & Hu, A. (2018). Ultrasonic vibration assisted grinding of CFRP composites: Effect of fiber orientation and vibration velocity on grinding forces and surface quality. International Journal of Lightweight Materials and Manufacture, 1(3), 189–196. https://doi.org/10.1016/j.ijlmm.2018.08.003 24. Hrechuk, A., Bushlya, V., M’Saoubi, R., & Ståhl, J.-E. (2018). Experimental investigations into tool wear of drilling CFRP. Procedia Manufacturing, 25, 294–301. https://doi.org/10.1016/j.promfg.2018.06.086 25. Liu, J., Zhang, D., Qin, L., & Yan, L. (2012). Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). International Journal of Machine Tools and Manufacture, 53(1), 141–150. https://doi.org/10.1016/j.ijmachtools.2011.10.007 26. Cong, W. L., Pei, Z. J., Feng, Q., Deines, T. W., & Treadwell, C. (2012). Rotary ultrasonic machining of CFRP: A comparison with twist drilling. Journal of Reinforced Plastics and Composites, 31(5), 313–321. https://doi.org/10.1177/0731684411427419 27. Lyons, W. (2012). The Application of Carbon Fibre Composites in the Aviation Industry. 28. Voss, R., Seeholzer, L., Kuster, F., & Wegener, K. (2017). Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP Journal of Manufacturing Science and Technology, 18, 75–91. https://doi.org/10.1016/j.cirpj.2016.10.002 29. Panahifar, F., Ghadimi, P., Azadnia, A. H., Heavey, C., & Byrne, P. J. (2015). A study on CPFR implementation critical factors for the automotive spare part industry. Proceedings - 8th EUROSIM Congress on Modelling and Simulation, EUROSIM 2013, (August 2014), 1–6. https://doi.org/10.1109/EUROSIM.2013.11 30. Miller, J., Eneyew, E. D., & Ramulu, M. (2013). Machining and drilling of carbon fiber reinforced 31. plastic (CFRP) composites. SAMPE Journal, 49(2), 36–46. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84874832145&partnerID=40&md5=785f41b33a1b636227b7dc5c1aee6e12 32. Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L. Y., & Bijwe, J. (2014). Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102, 35–50. https://doi.org/10.1016/j.compscitech.2014.07.005 33. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. (2015). Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 80, 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013 34. Zhu, P., Guo, M., Zhu, Q., & Tao, M. (1987). Analysis and Experiments of the Interaction of Steel and Concrete Composite Beam. Jianzhu Jiegou Xuebao/Journal of Building Structures, 8(5), 42–51. 35. sunny, T., Babu, J., & Philip, J. (2014). Experimental Studies on Effect of Process Parameters on Delamination in Drilling GFRP Composites Using Taguchi Method. Procedia Materials Science, 6(Icmpc), 1131–1142. https://doi.org/10.1016/j.mspro.2014.07.185 36. Chen, W. (1997). Some experimental investigations in the drilling of CFRP composite laminates. Int. J. Mach. Tools Manufact., 37(8), 1097–1108. https://doi.org/10.1016/S0890-6955(96)00095-8 37. Che, D., Saxena, I., Han, P., Guo, P., & Ehmann, K. F. (2014). Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review. Journal of Manufacturing Science and Engineering, 136(3), 034001. https://doi.org/10.1115/1.4026526 38. Chung, D. (1994). Carbon Fiber Composites Butterworth. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C28&q=D.+D.+L.+Chung%2C+Carbon+Fiber+Composites%2C+Butterworth–Heineman%2C+Newton%2C+MA+1994&btnG= 39. Yamamoto, T., Uematsu, K., & Yabushita, S. (2018). Enhancement of mechanical properties of carbon fiber reinforced thermoplastic using colloidal techniques. Procedia Manufacturing, 15, 1738–1745. https://doi.org/10.1016/j.promfg.2018.07.251 40. Kelly, G. (2004). Joining of carbon fibre reinforced plastics for automotive applications. In Aeronautical and Vehicle Engineering (Vol. 25). Retrieved from http://www.diva-portal.org/smash/record.jsf?pid=diva2:9674 41. Handbook, C. M. (n.d.). Composites : Guidelines for Characterization of. 42. Katz, R. N., Bracamonte, L. A., Withers, J. C., & Chaudhury, S. (2006). Hybrid ceramic matrix/metal matrix composite gun barrels. Materials and Manufacturing Processes, 21(6), 579–583. https://doi.org/10.1080/10426910600602846 43. Herrington, K. D., Baird, D. G., Bortner, M. J., Case, S. W., Martin, S. M., & Herrington, K. D. (2015). Factors Affecting Fiber Orientation and Properties in Semi-Flexible Fiber Composites : 44. Including the Addition of Carbon Nanotubes By Factors Affecting Fiber Orientation and Properties in Semi-Flexible Fiber Composites : Including the Addition of Carbon Na. Polytechnic Institute and State University. 45. Huang, X. (2009). Fabrication and properties of carbon fibers. Materials, 2(4), 2369–2403. https://doi.org/10.3390/ma2042369 46. Crow, R. (Jaguar L. R. (2016). Carbon Fibre in Mass Automotive Applications: Challenges and Drivers for composites. Franco-British Symposium on Composite Materials, 1–12. 47. Petersson, H., Motte, D., & Bjärnemo, R. (2013). Carbon Fiber Composite Materials in Modern Day Automotive Production Lines: A Case Study. Volume 2A: Advanced Manufacturing, V02AT02A037. https://doi.org/10.1115/IMECE2013-62272 48. Astakhov, V. P., & Davim, J. P. (n.d.). Tools (Geometry and Material) and Tool Wear _ Viktor P. Astakhov.pdf. 49. Introduction of CNC control and basics of Technology. (n.d.). , H. (2018) ‘A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials’, Defence Technology. China Ordnance Society, 14(4), pp. 318–326. doi: 10.1016/j.dt.2018.02.001. 50. Crow, R. (Jaguar L. R. (2016) ‘Carbon Fibre in Mass Automotive Applications: Challenges and Drivers for composites’, Franco-British Symposium on Composite Materials, pp. 1–12. 51. HAL Tejas (no date) tejas. Available at: http://www.tejas.gov.in/technology/composite_materials.html. 52. Huang, X. (2009) ‘Fabrication and properties of carbon fibers’, Materials, 2(4), pp. 2369–2403. doi: 10.3390/ma2042369. 53. Huda, A. H. N. F., Ascroft, H. and Barnes, S. (2016) ‘Machinability Study of Ultrasonic Assisted Machining (UAM) of Carbon Fibre Reinforced Plastic (CFRP) with Multifaceted Tool’, Procedia CIRP. Elsevier B.V., 46, pp. 488–491. doi: 10.1016/j.procir.2016.04.041. 54. Ishida, T. et al. (2014) ‘New production technologies in aerospace industry - 5th machining innovations conference (MIC 2014) helical milling of carbon fiber reinforced plastics using ultrasonic vibration and liquid nitrogen’, Procedia CIRP. Elsevier B.V., 24(C), pp. 13–18. doi: 10.1016/j.procir.2014.07.139. 55. Kiliçkap, E., Yardimeden, A. and Çelik, Y. H. (2015) ‘Investigation of experimental study of end milling of CFRP composite’, Science and Engineering of Composite Materials, 22(1), pp. 89–95. doi: 10.1515/secm-2013-0143. 56. Kuo, K. L. and Tsao, C. C. (2012) ‘Rotary ultrasonic-assisted milling of brittle materials’, Transactions of Nonferrous Metals Society of China (English Edition). The Nonferrous Metals Society of China, 22(SUPPL.3), pp. s793–s800. doi: 10.1016/S1003-6326(12)61806-8. 57. Lance & Shield (no date) ‘defense update’. Available at: https://defense-update.com/20051025_armor-principles.html. 58. Ning, F. et al. (2015) ‘Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling’, Composites Part B: Engineering. Elsevier Ltd, 80, pp. 369–378. doi: 10.1016/j.compositesb.2015.06.013. 59. Ning, F. et al. (2017) ‘Rotary Ultrasonic Surface Machining of CFRP Composites: A Comparison with Conventional Surface Grinding’, Procedia Manufacturing. Elsevier B.V., 10, pp. 557–567. doi: 10.1016/j.promfg.2017.07.049. 60. Park, K.-H. et al. (2014) ‘Understanding of Ultrasonic Assisted Machining with Diamond Grinding Tool’, Modern Mechanical Engineering, 04(01), pp. 1–7. doi: 10.4236/mme.2014.41001. 61. Petersson, H., Motte, D. and Bjärnemo, R. (2013) ‘Carbon Fiber Composite Materials in Modern Day Automotive Production Lines: A Case Study’, Volume 2A: Advanced Manufacturing, p. V02AT02A037. doi: 10.1115/IMECE2013-62272. 62. Ramulu, M. and Arola, D. (1995) ‘Orthognal cutting mechanism of graphite/epoxy composite. Part II: Multi-directional laminate’, 35(12), pp. 1639–1648. 63. Sharma, M. et al. (2014) ‘Carbon fiber surfaces and composite interphases’, Composites Science and Technology. Elsevier Ltd, 102, pp. 35–50. doi: 10.1016/j.compscitech.2014.07.005.