A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics

Hybrid collector of photovoltaic thermal solar collector (PVT) produced electricity and thermal energy simultaneously. The electricity generated can be connected to grid or be used to operate the fan or pump. This research is aimed at investigating the type of nanofluid for PVT. There are having the...

Full description

Saved in:
Bibliographic Details
Main Author: Mohd Ahadlin, Mohd Ahassolehin
Format: Thesis
Language:English
English
Published: 2020
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/25170/1/A%20Simulation%20Study%20On%20Photovoltaic%20Thermal%20Nanofluid%20Silicon%20Carbide%20Using%20Computational%20Fluid%20Dynamics.pdf
http://eprints.utem.edu.my/id/eprint/25170/2/A%20Simulation%20Study%20On%20Photovoltaic%20Thermal%20Nanofluid%20Silicon%20Carbide%20Using%20Computational%20Fluid%20Dynamics.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.25170
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Mohd Rosli, Mohd Afzanizam

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Mohd Ahadlin, Mohd Ahassolehin
A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics
description Hybrid collector of photovoltaic thermal solar collector (PVT) produced electricity and thermal energy simultaneously. The electricity generated can be connected to grid or be used to operate the fan or pump. This research is aimed at investigating the type of nanofluid for PVT. There are having the three concentration nanofluid SiC at 0.5 wt%, 1.0 wt% and 1.5wt%. The computational fluid dynamics (CFD) simulation was carried out by the program ANSYS Fluent. For this research, water was selected as the heat transfer fluid for the verification and validation, although at difference concentration for the analysis based on nanofluid SiC. The geometry model was drawn Design Moduler (DM) and meshing to generated mesh model. The viscous model, radiation model, and material properties have been built in system simulation, and the heat transfer flow is laminar flow. The coupled wall model was thus used in radiation model, the photovoltaic panel used in this photovoltaic cell based on silicon study. Validation was done by comparison to prior research. On the other hand, in comparison between previous research and current, the root mean square error was 9.37 per cent. The influences of velocity and solar irradiance intensity on performance PVT nanofluid were determined by using CFD simulation. The highest numbers of total efficiency are at concentration nanofluid 0.5 wt% and velocity 0.010 m/s at value 49.42%.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Mohd Ahadlin, Mohd Ahassolehin
author_facet Mohd Ahadlin, Mohd Ahassolehin
author_sort Mohd Ahadlin, Mohd Ahassolehin
title A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics
title_short A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics
title_full A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics
title_fullStr A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics
title_full_unstemmed A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics
title_sort simulation study on photovoltaic thermal nanofluid silicon carbide using computational fluid dynamics
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Mechanical Engineering
publishDate 2020
url http://eprints.utem.edu.my/id/eprint/25170/1/A%20Simulation%20Study%20On%20Photovoltaic%20Thermal%20Nanofluid%20Silicon%20Carbide%20Using%20Computational%20Fluid%20Dynamics.pdf
http://eprints.utem.edu.my/id/eprint/25170/2/A%20Simulation%20Study%20On%20Photovoltaic%20Thermal%20Nanofluid%20Silicon%20Carbide%20Using%20Computational%20Fluid%20Dynamics.pdf
_version_ 1747834110335778816
spelling my-utem-ep.251702021-09-29T11:46:22Z A Simulation Study On Photovoltaic Thermal Nanofluid Silicon Carbide Using Computational Fluid Dynamics 2020 Mohd Ahadlin, Mohd Ahassolehin T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Hybrid collector of photovoltaic thermal solar collector (PVT) produced electricity and thermal energy simultaneously. The electricity generated can be connected to grid or be used to operate the fan or pump. This research is aimed at investigating the type of nanofluid for PVT. There are having the three concentration nanofluid SiC at 0.5 wt%, 1.0 wt% and 1.5wt%. The computational fluid dynamics (CFD) simulation was carried out by the program ANSYS Fluent. For this research, water was selected as the heat transfer fluid for the verification and validation, although at difference concentration for the analysis based on nanofluid SiC. The geometry model was drawn Design Moduler (DM) and meshing to generated mesh model. The viscous model, radiation model, and material properties have been built in system simulation, and the heat transfer flow is laminar flow. The coupled wall model was thus used in radiation model, the photovoltaic panel used in this photovoltaic cell based on silicon study. Validation was done by comparison to prior research. On the other hand, in comparison between previous research and current, the root mean square error was 9.37 per cent. The influences of velocity and solar irradiance intensity on performance PVT nanofluid were determined by using CFD simulation. The highest numbers of total efficiency are at concentration nanofluid 0.5 wt% and velocity 0.010 m/s at value 49.42%. 2020 Thesis http://eprints.utem.edu.my/id/eprint/25170/ http://eprints.utem.edu.my/id/eprint/25170/1/A%20Simulation%20Study%20On%20Photovoltaic%20Thermal%20Nanofluid%20Silicon%20Carbide%20Using%20Computational%20Fluid%20Dynamics.pdf text en public http://eprints.utem.edu.my/id/eprint/25170/2/A%20Simulation%20Study%20On%20Photovoltaic%20Thermal%20Nanofluid%20Silicon%20Carbide%20Using%20Computational%20Fluid%20Dynamics.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=118376 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Mechanical Engineering Mohd Rosli, Mohd Afzanizam 1. Abdelrazik, A. S. et al. (2018) ‘A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 95(July), pp. 110–129. doi: 10.1016/j.rser.2018.07.013. 2. Abdullah, A. L. et al. (2019) ‘Numerical analysis of solar hybrid photovoltaic thermal air collector simulation by ANSYS’, CFD Letters, 11(2), pp. 1–11. 3. Akilu, S. et al. (2016) ‘Temperature Dependent Properties of Silicon Carbide Nanofluid in Binary Mixtures of Glycerol-Ethylene Glycol’, Procedia Engineering. Elsevier B.V., 148, pp. 774–778. doi: 10.1016/j.proeng.2016.06.555. 4. Ali Najah et al, (2019) Performance Enhancement of Grid Connected Photovoltaic Thermal System by Nanofluids. 5. Al-Shamani, A. N. et al. (2016) ‘Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions’, Energy Conversion and Management. Elsevier Ltd, 124, pp. 528–542. doi: 10.1016/j.enconman.2016.07.052. 6. Al-Shamani, A. N. et al. (2017) ‘Performance enhancement of photovoltaic grid-connected system using PVT panels with nanofluid’, Solar Energy. Elsevier Ltd, 150, pp. 38–48. doi:10.1016/j.solener.2017.04.005. 7. Al-Shamani, A. N. et al. (2018) ‘Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nano-fluids’, Energy. Elsevier Ltd, 145, pp. 770–792. doi: 10.1016/j.energy.2017.11.156. 8. Al-Waeli, A. H. A., Sopian, K., Chaichan, M. T., Kazem, H. A., Hasan, H. A., et al. (2017) ‘An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system’, Energy Conversion and Management. Elsevier Ltd, 142, pp. 547–558. doi:10.1016/j.enconman.2017.03.076. 9. Al-Waeli, A. H. A., Sopian, K., Chaichan, M. T., Kazem, H. A., Ibrahim, A., et al. (2017) ‘Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study’, Energy Conversion and Management, 151(July), pp. 693–708. doi:10.1016/j.enconman.2017.09.032. 10. Al-Waeli, A. H. A. et al. (2018a) ‘Numerical study on the effect of operating nanofluids of photovoltaic thermal system (PV/T) on the convective heat transfer’, Case Studies in Thermal Engineering. Elsevier Ltd, 12(May), pp. 405–413. doi: 10.1016/j.csite.2018.05.011. 11. Al-Waeli, A. H. A., Chaichan, M. T., Kazem, H. A., et al. (2019) ‘Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems’, Case Studies in Thermal Engineering. Elsevier Ltd, 13(November 2018), p. 100392. doi: 10.1016/j.csite.2019.100392. 12. Al-Waeli, A. H. A., Chaichan, M. T., Sopian, K. and Kazem, H. A. (2019) ‘Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant’, Case Studies in Thermal Engineering, 13(October 2018), pp. 1–8. doi: 10.1016/j.csite.2018.10.001. 13. Al-Waeli, A. H. A., Chaichan, M. T., Sopian, K., Kazem, H. A., et al. (2019) ‘Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM’, Solar Energy. Elsevier, 177(July 2018), pp. 178–191. doi: 10.1016/j.solener.2018.11.016. 14. Aste, N., Del Pero, C. and Leonforte, F. (2012) ‘Thermal-electrical optimization of the configuration a liquid PVT collector’, Energy Procedia, 30, pp. 1–7. doi:10.1016/j.egypro.2012.11.002. 15. Bent Sorensen Paul Breeze Truman Storvick Shang-Tian Yang Aldo da Rosa Harsh Gupta Roy SukantaMukeshDoblePrebenMaegaard Gianfranco Pistoia SoterisKalogirou. (2008) Renewable Energy Focus Handbook 1st Edition. 9780123747051 Academic Press pp 528 16. Crisostomo, F. et al. (2015) ‘Desing and on-sun testing of a hybrid PVT prototype using a nanofluid-based selective absorption filter’, International Conference on the European Energy Market, EEM, 2015-Augus, pp. 2–6. doi: 10.1109/EEM.2015.7216650. 17. Europe, F. (no date) ‘Tutorial : Using Solar Load Model for Indoor Ventilation Introduction Prerequisites’,pp. 1–18. 18. Fayaz, H. et al. (2018) ‘Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate’, Solar Energy, 169(November 2017), pp. 217–230. doi: 10.1016/j.solener.2018.05.004. 19. Gangadevi, R., Vinayagam, B. K. and Senthilraja, S. (2017) ‘Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid’, IOP Conference Series: Materials Science and Engineering, 197(1). doi: 10.1088/1757-899X/197/1/012041. 20. Ghadiri, M. et al. (2015) ‘Experimental investigation of a PVT system performance using nano ferrofluids’, Energy Conversion and Management. Elsevier Ltd, 103, pp. 468–476. doi:10.1016/j.enconman.2015.06.077. 21. Hasan, H. A. et al. (2017) ‘Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector’, Solar Energy. Elsevier Ltd, 144, pp. 321–334. doi:10.1016/j.solener.2017.01.036. 22. Hosseinzadeh, M. et al. (2018) ‘Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation’, Energy Conversion and Management. Elsevier, 160(October 2017), pp. 93–108. doi: 10.1016/j.enconman.2018.01.006. 23. Huminic, G. et al. (2017) ‘Thermo-physical properties of water based SiC nanofluids for heat transfer applications’, International Communications in Heat and Mass Transfer. Elsevier, 84, pp. 94–101. doi: 10.1016/j.icheatmasstransfer.2017.04.006. 24. Ibrahim, A. et al. (2014) ‘Efficiencies and improvement potential of building integrated photovoltaic thermal ( BIPVT ) system’, Energy Conversion and Management. Elsevier Ltd, 77, pp. 527–534. doi: 10.1016/j.enconman.2013.10.033. 25. Jing, D. et al. (2015) ‘Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system’, Solar Energy. Elsevier Ltd, 112, pp. 30–40. doi:10.1016/j.solener.2014.11.008. 26. Khadim, A. N. (2017) ‘Performance Enhancement of Grid Connected Photovoltaic’. Khelifa, A. et al. (2015) ‘Analysis of a Hybrid Solar Collector Photovoltaic Thermal (PVT)’,Energy Procedia. Elsevier B.V., 74, pp. 835–843. doi:10.1016/j.egypro.2015.07.819. 27. Kolahan, A. et al. (2017) ‘Numerical and Experimental Investigations on the Effect of Adding Nanoparticles on Entropy Generation in PVT Systems’, 17th Conference On Fluid Dynamics,Shahrood University of Technology, Shahrood, Iran, (August). 28. Lari, M. O. and Sahin, A. Z. (2017) ‘Design, performance and economic analysis of a nanofluidbased photovoltaic/thermal system for residential applications’, Energy Conversion and Management. Elsevier, 149(July), pp. 467–484. doi: 10.1016/j.enconman.2017.07.045. 29. Li, Y. and Jing, D. (2017) ‘Investigation of the performance of photovoltaic/thermal system by a coupled TRNSYS and CFD simulation’, Solar Energy. Elsevier Ltd, 143, pp. 100–112. doi:10.1016/j.solener.2016.12.051. 30. Lyes, M. et al. (2017) ‘Effect of Operation Parameters on Efficiency of Photovoltaic Thermal Sensor Using Water’, Energy Procedia. Elsevier B.V., 134, pp. 205–213. doi:10.1016/j.egypro.2017.09.610. 31. Maadi, S. R. et al. (2019) ‘Coupled thermal-optical numerical modeling of PV/T module –Combining CFD approach and two-band radiation DO model’, Energy Conversion and Management. Elsevier, 198(July), p. 111781. doi: 10.1016/j.enconman.2019.111781. 32. Mahmood, A. et al. (2017) ‘Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity’, Results in Physics. The Authors, 7, pp. 3425–3433. doi: 10.1016/j.rinp.2017.08.045. 33. Misha, S. et al. (2019) ‘Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions’, Energy Reports. Elsevier Ltd, (xxxx). doi:10.1016/j.egyr.2019.11.162. 34. Mousavi, S. et al. (2018) ‘Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system’, Energy Conversion and Management, 163(September 2017), pp. 187–195. doi: 10.1016/j.enconman.2018.02.039. 35. Nagarajan, P. K. et al. (2014) ‘Nanofluids for solar collector applications: A review’, Energy Procedia. Elsevier B.V., 61, pp. 2416–2434. doi: 10.1016/j.egypro.2014.12.017. 36. Nasrin, R. et al. (2018) ‘Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research’, Renewable Energy. Elsevier Ltd, 121, pp. 286–300. doi:10.1016/j.renene.2018.01.014. 37. Noghrehabadi, A., Hajidavaloo, E. and Moravej, M. (2016) ‘Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid’, Case Studies in Thermal Engineering. Elsevier Ltd, 8, pp. 378–386. doi:10.1016/j.csite.2016.08.006. 38. Rosli, M. A. M. et al. (2014) ‘Thermal Efficiency of the Photovoltaic Thermal System with Serpentine Tube Collector’, Applied Mechanics and Materials, 699, pp. 455–461. doi:10.4028/www.scientific.net/amm.699.455. 39. Sardarabadi, M., Hosseinzadeh, M., et al. (2017) ‘Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints’, Energy. Elsevier Ltd, 138, pp. 682–695. doi: 10.1016/j.energy.2017.07.046. 40. Sardarabadi, M., Passandideh-Fard, M., et al. (2017) ‘Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems’, Solar Energy Materials and Solar Cells. Elsevier, 161(November 2016), pp. 62–69. doi: 10.1016/j.solmat.2016.11.032. 41. Sardarabadi, M. and Passandideh-Fard, M. (2016) ‘Experimental and numerical study of metaloxides/ water nanofluids as coolant in photovoltaic thermal systems (PVT)’, Solar Energy Materials and Solar Cells. Elsevier, 157, pp. 533–542. doi: 101016/j.solmat.2016.07.008. 42. Sardarabadi, M., Passandideh-Fard, M. and Zeinali Heris, S. (2014) ‘Experimental investigation of the effects of silica/water nanofluid onPV/T (photovoltaic thermal units)’, Energy, 66, pp.264–272. doi: 10.1016/j.energy.2014.01.102. 43. Skoplaki, E. and Palyvos, J. A. (2009) ‘On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations’, Solar Energy. Elsevier Ltd, 83(5), pp. 614–624. doi: 10.1016/j.solener.2008.10.008. 44. Su, B. et al. (2018) ‘Performance analysis of a hybrid photovoltaic/thermal and liquid desiccant system’, Energy Procedia. Elsevier B.V., 145, pp. 116–121. doi: 10.1016/j.egypro.2018.04.019. 45. Yazdanifard, F., Ameri, M. and Ebrahimnia-Bajestan, E. (2017) ‘Performance of nanofluidbased photovoltaic/thermal systems: A review’, Renewable and Sustainable Energy Reviews, 76(December 2016), pp. 323–352. doi: 10.1016/j.rser.2017.03.025. 46. Zhou, J., Ke, H. and Deng, X. (2018) ‘Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector’, Solar Energy. Elsevier, 174(September), pp. 735–742. doi: 10.1016/j.solener.2018.09.063.