Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern

Natural fibres, due to their eco-friendly nature and sustainability, receive attention from researchers and academics to be used in polymer composites. In this study, the effect of stitching pattern on properties of woven kenaf fabric reinforced polymer (thermoset and thermoplastic) composites was a...

Full description

Saved in:
Bibliographic Details
Main Author: Husin, Mohd Amirhafizan
Format: Thesis
Language:English
English
Published: 2021
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/25401/1/Development%20Of%20Kenaf%20Woven%20Fabric%20Reinforced%20Epoxy%20And%20Polypropylene%20Composite%20With%20Different%20Stitching%20Pattern.pdf
http://eprints.utem.edu.my/id/eprint/25401/2/Development%20Of%20Kenaf%20Woven%20Fabric%20Reinforced%20Epoxy%20And%20Polypropylene%20Composite%20With%20Different%20Stitching%20Pattern.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.25401
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Yaakob, Mohd Yuhazri

topic T Technology (General)
T Technology (General)
spellingShingle T Technology (General)
T Technology (General)
Husin, Mohd Amirhafizan
Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern
description Natural fibres, due to their eco-friendly nature and sustainability, receive attention from researchers and academics to be used in polymer composites. In this study, the effect of stitching pattern on properties of woven kenaf fabric reinforced polymer (thermoset and thermoplastic) composites was analysed. The hand lay-up followed by a vacuum baggage technique was used to fabricate thermoset composite and a hot pressing technique was used to produce thermoplastic composites. The materials used were epoxy resin and polypropylene, which acted as matrices and woven kenaf fibre as a reinforcement. The composites were made in different patterns of stitches which were divided into two categories, basic patterns which were stitched together by a single cross, including Vertical (V), Horizontal (H), Tilt 30° (T30) and Tilt 60° (T60). The other was a complex pattern, stitch with a double cross, including Box, Tilt 45°/90° (T45/90), Tilt 30°/30° (T30/30) and Tilt 60°/60° (T60/60). Tensile test, impact test and hemisphere test of the composites were evaluated in accordance with an ASTM standard. The highest specific strength for single and double stitching was found in samples V and T60/60 of 9.53 MPa/g and 12.75 MPa/g respectively, with an improvement of 14.41% and 53.06% compared to unstitched samples. It was also found that the double stitch patterns show good agreement in improving the tensile and impact performance, either for reinforced thermoset or thermoplastic composite. The results also show that the composite samples reinforced thermoset matrix have better specific strength performance, approximately 3.58 MPa/g to 10.49 MPa/g compared to the composite reinforced thermoplastic matrix. This is due to the thermosetting matrix is generally tougher and stronger than thermoplastics. However, in impact performance, thermoplastic reinforced composite samples show higher impact strength, approximately 3.73 J/cm2 to 4.25 J/cm2 compared to thermoset composites due to excellent impact resistance and damage tolerance by reducing crack propagation and better stress distribution throughout the structure. The evidence from this study suggested that the stitching patterns and stitching angle gave significant effect to the performance of woven stitch kenaf composite compared to the unstitched ones. Implications of the results and future research direction were also presented.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Husin, Mohd Amirhafizan
author_facet Husin, Mohd Amirhafizan
author_sort Husin, Mohd Amirhafizan
title Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern
title_short Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern
title_full Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern
title_fullStr Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern
title_full_unstemmed Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern
title_sort development of kenaf woven fabric reinforced epoxy and polypropylene composite with different stitching pattern
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Manufacturing Engineering
publishDate 2021
url http://eprints.utem.edu.my/id/eprint/25401/1/Development%20Of%20Kenaf%20Woven%20Fabric%20Reinforced%20Epoxy%20And%20Polypropylene%20Composite%20With%20Different%20Stitching%20Pattern.pdf
http://eprints.utem.edu.my/id/eprint/25401/2/Development%20Of%20Kenaf%20Woven%20Fabric%20Reinforced%20Epoxy%20And%20Polypropylene%20Composite%20With%20Different%20Stitching%20Pattern.pdf
_version_ 1747834119109214208
spelling my-utem-ep.254012021-11-18T14:05:56Z Development Of Kenaf Woven Fabric Reinforced Epoxy And Polypropylene Composite With Different Stitching Pattern 2021 Husin, Mohd Amirhafizan T Technology (General) TA Engineering (General). Civil engineering (General) Natural fibres, due to their eco-friendly nature and sustainability, receive attention from researchers and academics to be used in polymer composites. In this study, the effect of stitching pattern on properties of woven kenaf fabric reinforced polymer (thermoset and thermoplastic) composites was analysed. The hand lay-up followed by a vacuum baggage technique was used to fabricate thermoset composite and a hot pressing technique was used to produce thermoplastic composites. The materials used were epoxy resin and polypropylene, which acted as matrices and woven kenaf fibre as a reinforcement. The composites were made in different patterns of stitches which were divided into two categories, basic patterns which were stitched together by a single cross, including Vertical (V), Horizontal (H), Tilt 30° (T30) and Tilt 60° (T60). The other was a complex pattern, stitch with a double cross, including Box, Tilt 45°/90° (T45/90), Tilt 30°/30° (T30/30) and Tilt 60°/60° (T60/60). Tensile test, impact test and hemisphere test of the composites were evaluated in accordance with an ASTM standard. The highest specific strength for single and double stitching was found in samples V and T60/60 of 9.53 MPa/g and 12.75 MPa/g respectively, with an improvement of 14.41% and 53.06% compared to unstitched samples. It was also found that the double stitch patterns show good agreement in improving the tensile and impact performance, either for reinforced thermoset or thermoplastic composite. The results also show that the composite samples reinforced thermoset matrix have better specific strength performance, approximately 3.58 MPa/g to 10.49 MPa/g compared to the composite reinforced thermoplastic matrix. This is due to the thermosetting matrix is generally tougher and stronger than thermoplastics. However, in impact performance, thermoplastic reinforced composite samples show higher impact strength, approximately 3.73 J/cm2 to 4.25 J/cm2 compared to thermoset composites due to excellent impact resistance and damage tolerance by reducing crack propagation and better stress distribution throughout the structure. The evidence from this study suggested that the stitching patterns and stitching angle gave significant effect to the performance of woven stitch kenaf composite compared to the unstitched ones. Implications of the results and future research direction were also presented. 2021 Thesis http://eprints.utem.edu.my/id/eprint/25401/ http://eprints.utem.edu.my/id/eprint/25401/1/Development%20Of%20Kenaf%20Woven%20Fabric%20Reinforced%20Epoxy%20And%20Polypropylene%20Composite%20With%20Different%20Stitching%20Pattern.pdf text en validuser http://eprints.utem.edu.my/id/eprint/25401/2/Development%20Of%20Kenaf%20Woven%20Fabric%20Reinforced%20Epoxy%20And%20Polypropylene%20Composite%20With%20Different%20Stitching%20Pattern.pdf text en public https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=119747 phd doctoral Universiti Teknikal Malaysia Melaka Faculty of Manufacturing Engineering Yaakob, Mohd Yuhazri 1. Aamir, M., Tolouei-Rad, M., Giasin, K. and Nosrati, A., 2019. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review. The International Journal of Advanced Manufacturing Technology, 105(5-6), pp.2289-2308. 2. Abdullah, M.N., Muda, M.K.H., Mustapha, F. and Yaakob, M.S., 2016. Oblique impact analysis on kenaf (Hibiscus Cannabinus) and flax (Linum Usitatissimum) natural fiber sport cycling helmets. Malaysian Journal of Movement, Health & Exercise, 5(1), pp.57-67. Aboutalebi, S. and Stetson, C.L., 2005. Paintball purpura. Journal of the American Academy of Dermatology, 53(5), pp.901-902. 3. Abtew, M.A., Boussu, F., Bruniaux, P., Loghin, C., Cristian, I., Chen, Y. and Wang, L., 2018. Forming characteristics and surface damages of stitched multi-layered para-aramid fabrics with various stitching parameters for soft body armour design. Composites Part A: Applied Science and Manufacturing, 109, pp.517-537. 4. Achukwu, E.O., Dauda, B.M. and Ishiaku, U.S., 2015. Mechanical properties of plied cotton fabric-coated unsaturated polyester composites: Effects of alkali treatments. International Journal of Composite Materials, 5(4), pp.71-78. 5. Adanur, S. and Liao, T., 1998. 3D modeling of textile composite preforms. Composites Part B: Engineering, 29(6), pp.787-793. 6. Ahmad, H. and Supar, K., 2016. Experimental strength of woven fabric kenaf composite plates with different stacking sequences. Applied Mechanics and Materials. 833, pp.27-32. Ahmad, H. and Ismail, A.E., 2017. Fracture energy of woven fabric kenaf composite plates with different fiber orientations. Materials Science Forum. 882, pp.56-60. 7. Ahmad, M.R., Ahmad, W.Y.W., Salleh, J. and Samsuri, A., 2008. Effect of fabric stitching on ballistic impact resistance of natural rubber coated fabric systems. Materials & Design, 29(7), pp.1353-1358. 8. Ahmad, Z., Sirkova, B.K., Ahmad, S., Naeem, M.S., and Hassan, S.Z., 2018. Effect of material and stitching on tensile properties of woven fabrics. IOP Conference Series: Material Science and Engineering. 414(1), pp.1-7. 9. Aisyah, H.A., Paridah, M.T., Sahri, M.H., Anwar, U.M.K. and Astimar, A.A., 2013. Properties of medium density fibreboard (MDF) from kenaf (Hibiscus cannabinus L.) core as function of refining conditions. Composites Part B: Engineering, 44(1), pp.592-596. 10. Aizan, N., Zaini, M., Akhmar, Z., Salim, S.A., Mohd Muhiddin, A., Nor Hazwani, Z. and Siti Sarah, J., 2013. Study on cure characteristics and mechanical behaviours of kenaf fibre reinforced natural rubber composites. Advanced Materials Research, 812, pp.66-72. 11. Aji, I.S., Zainudin, E.S., Sapuan, S.M., Khalina, A. and Khairul, M.D., 2012. Study of hybridized kenaf/palf-reinforced HDPE composites by dynamic mechanical analysis. Polymer-Plastics Technology and Engineering, 51(2), pp.146-153. Akil, H.M., Santulli, C., Sarasini, F., Tirillò, J. and Valente, T., 2014. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Composites Science and Technology, 94, pp.62-70. 12. Akil, H., Omar, M.F., Mazuki, A.A.M., Safiee, S.Z.A.M., Ishak, Z.M. and Bakar, A.A., 2011. Kenaf fiber reinforced composites: A review. Materials & Design, 32(8), pp.4107- 4121. 13. Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalan, M. and Venkateshwaren, N., 2015. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random oreintation. Materials and Design, 66, pp.246-257. 14. Ali, I., Jayaraman, K. and Bhattacharyya, D., 2014. Implications of fiber characteristics and mat densification on permeability, compaction and properties of kenaf fiber panels. Industrial Crops and Products, 61, pp.293-302. 15. Ali, M., Liu, A., Sou, H. and Chouw, N., 2012. Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, pp.814-825. Almeida, J.H.S., Angrizani, C.C., Botelho, E.C. and Amico, S.C., 2015. Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites. Materials & Design, 65, pp.789-795. 16. Al-Maharma, A.Y. and Sendur, P., 2018. Review of the main factors controlling the fracture toughness and impact strength properties of natural composites. Materials Research Express, 6(2), pp.1-32. 17. Al-Oqla, F.M. and Sapuan, S.M., 2014. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, pp.347-354. 18. Alpyildiz, T., Icten, B.M., Karakuzu, R. and Kurbak, A., 2009. The effect of tuck stitches on the mechanical performance of knitted fabric reinforced composites. Composite Structures, 89(3), pp.391-398. 19. Al-Shamary, A.K.J., Karakuzu, R. and Özdemir, O., 2016. Low-velocity impact response of sandwich composites with different foam core configurations. Journal of Sandwich Structures & Materials, 18(6), pp.754-768. 20. Andre, N.G. and Ishak, Z.M., 2016. Predicting the tensile modulus of randomly oriented nonwoven kenaf/epoxy composites. Procedia Chemistry, 19, pp.419-425. 21. Angelov, I., Wiedmer, S., Evstatiev, M., Friedrich, K. and Mennig, G., 2007. Pultrusion of a flax/polypropylene yarn. Composites Part A: Applied Science and Manufacturing, 38(5), pp.1431-1438. 22. Anzelotti, G., Nicoletto, G. and Riva, E., 2008. Mesomechanic strain analysis of twill-weave composite lamina under unidirectional in-plane tension. Composites Part A: Applied Science and Manufacturing, 39(8), pp.1294-1301. 23. Araújo, H.A.M., Machado, J.J.M., Marques, E.A.S. and Da Silva, L.F.M., 2017. Dynamic behaviour of composite adhesive joints for the automotive industry. Composite Structures, 171, pp.549-561. 24. Arbelaiz, A., Fernandez, B., Cantero, G., Llano-Ponte, R., Valea, A. and Mondragon, I., 2005. Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Composites Part A: Applied Science and Manufacturing, 36(12), pp.1637-1644. 25. Arthanarieswaran, V.P., Kumaravel, A. and Kathirselvam, M., 2014. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Materials & Design, 64, pp.194-202. 26. Asim, M., Jawaid, M., Abdan, K. and Ishak, M.R., 2016. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 13(3), pp.426-435. 27. Asumani, O.M.L., Reid, R.G. and Paskaramoorthy, R., 2012. The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 43(9), pp.1431-1440. 28. Atiqah, A., Maleque, M.A., Jawaid, M. and Iqbal, M., 2014. Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Composites Part B: Engineering, 56, pp.68-73. 29. Ayadi, R., Hanana, M., Mzid, R., Hamrouni, L., Khouja, M.L. and Salhi Hanachi, A., 2017. Hibiscus cannabinus L.–Kenaf: A Review Paper. Journal of Natural Fibers, 14(4), pp.466- 484. 30. Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P. and White, R.H., 2011. Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 12(7), pp.919-926. 31. Aziz, S.H. and Ansell, M.P., 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1–polyester resin matrix. Composites science and technology, 64(9), pp.1219-1230. 32. Azwa, Z.N. and Yousif, B.F., 2013. Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polymer degradation and stability, 98(12), pp.2752-2759. 33. Baghaei, B. and Skrifvars, M., 2016. Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–Lyocell hybrid yarn fabrics. Composites Part A: Applied Science and Manufacturing, 81, pp.139-144. 34. Bajpai, P.K., Ram, K., Gahlot, L.K. and Jha, V.K., 2018. Fabrication of glass/jute/epoxy composite based industrial safety helmet. Materials Today: Proceedings, 5(2), pp.8699- 8706. 35. Bajurko, P., 2019. Comparison of damage resistance of thermoplastic and thermoset carbon fibre-reinforced composites. Journal of Thermoplastic Composite Materials, pp.1-13. 36. Bakare, F.O., Ramamoorthy, S.K., Åkesson, D. and Skrifvars, M., 2016. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Composites Part A: Applied Science and Manufacturing, 83, pp.176-184. 37. Bakar, N.A., Chee, C.Y., Abdullah, L.C., Ratnam, C.T. and Ibrahim, N.A., 2015. Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Materials & Design, 65, pp.204-211. Bakis, C.E., Bank, L.C., Brown, V., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H. and Triantafillou, T.C., 2002. Fiber-reinforced polymer composites for construction—State-of-the-art review. Journal of composites for construction, 6(2), pp.73- 87. 38. Balakrishnan, P., John, M.J., Pothen, L., Sreekala, M.S. and Thomas, S., 2016. Natural fibre and polymer matrix composites and their applications in aerospace engineering. Advanced composite materials for aerospace engineering, pp.365-383. Woodhead Publishing. 39. Barbero, E., 2010. Introduction to Composite Materials Design, Second Edition. Hoboken: CRC Press. pp.1-562. 40. Barbero, E. 2017. Introduction to Composite Materials Design. Boca Raton: CRC Press, pp.1-570. 41. Batouli, S.M., Zhu, Y., Nar, M. and D'Souza, N.A., 2014. Environmental performance of kenaf-fiber reinforced polyurethane: a life cycle assessment approach. Journal of cleaner production, 66, pp.164-173. 42. Benin, M.A., Retnam, B.S.J., Ramachandran, M., Sivapragash, M. and Dhas, J.E.R., 2015. Comparative study of tensile properties on thermoplastic and thermosetting polymer composites. International Journal of Applied Engineering Research, 10(11), pp.10109- 10113. 43. Bernard, M., Khalina, A., Ali, A., Janius, R., Faizal, M., Hasnah, K.S. and Sanuddin, A.B., 2011. The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Materials & Design, 32(2), pp.1039-1043. 44. Bharath, B., Kumar, G.C., Shivanna, G., Hussain, S.S., Chandrashekhar, B., Raj, B.S., Kumar, S.A. and Girisha, C., 2018. Fabrication and mechanical characterization of biocomposite helmet. Materials Today: Proceedings, 5(1), pp.2716-2720. 45. Bharath, K.N. and Basavarajappa, S., 2016. Applications of biocomposite materials based on natural fibers from renewable resources: a review. Science and Engineering of Composite Materials, 23(2), pp.123-133. 46. Bhoopathi, R., Ramesh, M. and Deepa, C., 2014. Fabrication and property evaluation of banana-hemp-glass fiber reinforced composites. Procedia Engineering, 97, pp.2032-2041. Bhudolia, S.K., Kam, K.K., Perrotey, P. and Joshi, S.C., 2019. Effect of fixation stitches on out-of-plane response of textile non-crimp fabric composites. Journal of Industrial Textiles, 48(7), pp.1151-1166. 47. Bigaud, J., Aboura, Z., Martins, A.T. and Verger, S., 2018. Analysis of the mechanical behavior of composite T-joints reinforced by one side stitching. Composite structures, 184, pp.249-255. 48. Bledzki, A.K., Franciszczak, P., Osman, Z. and Elbadawi, M., 2015. Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products, 70, pp.91-99. 49. Bledzki, A.K., Mamun, A.A., Lucka-Gabor, M. and Gutowski, V.S., 2008. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), pp.413-422. 50. Bunsell, A. and Renard, J., 2005. Fundamentals of fibre reinforced composite materials, First Edition. Bristol [u.a.]: Institute of Physics: Series in Materials Science and Engineering, pp.88-173. 51. Butylina, S., Martikka, O. and Kärki, T., 2011. Physical and mechanical properties of woodpolypropylene composites made with virgin and/or recycled polypropylene. PolymerPlastics Technology and Engineering, 50(10), pp.1040-1046. 52. Byun, J.H., Wang, Y.Q., Um, M.K., Lee, S.K., Song, J.I. and Kim, B.S., 2015. Stitching effect on flexural and interlaminar properties of MWK textile composites. Composites Research, 28(3), pp.136-141. 53. Campbell, F., 2010. Structural composite materials. Materials Park, Ohio: ASM International USA. 54. Cho, D., Lee, H.S. and Han, S.O., 2009. Effect of fiber surface modification on the interfacial and mechanical properties of kenaf fiber-reinforced thermoplastic and thermosetting polymer composites. Composite Interfaces, 16(7-9), pp.711-729. 55. Centea, T., Grunenfelder, L.K. and Nutt, S.R., 2015. A review of out-of-autoclave prepregs–material properties, process phenomena, and manufacturing considerations. Composites Part A: Applied Science and Manufacturing, 70, pp.132-154. 56. Cernicchi, A., Galvanetto, U. and Iannucci, L., 2008. Virtual modelling of safety helmets: practical problems. International journal of crashworthiness, 13(4), pp.451-467. Cheikh, R.B., Michel, A. and Billington, S., 2014. Mechanical characterization and modelling of poly (ß-hydroxybutyrate) – co-poly (ß-hydroxybutyrate) – Alfa fiberreinforced composite. Polymer Composites, 35(9), pp.1758-1766. 57. Cheung, H.Y., Ho, M.P., Lau, K.T., Cardona, F. and Hui, D., 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7), pp.655-663. 58. Cicala, G., Cristaldi, G., Recca, G., Ziegmann, G., El-Sabbagh, A. and Dickert, M., 2009. Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Materials & Design, 30(7), pp.2538-2542. 59. Conn, J.M., Annest, J.L., Gilchrist, J. and Ryan, G.W., 2004. Injuries from paintball game related activities in the United States, 1997–2001. Injury Prevention, 10(3), pp.139-143. 60. Cordin, M., Bechtold, T. and Pham, T., 2018. Effect of fibre orientation on the mechanical properties of polypropylene–lyocell composites. Cellulose, 25(12), pp.7197-7210. 61. Cripps, D., Searle, T.J. and Summerscales, J., 2000. Open mold techniques for thermoset composites. Comprehensive Composite Materials, 2, pp.737-761. 62. Dan‐Mallam, Y., Abdullah, M.Z. and Yusoff, P.S.M.M., 2014. The effect of hybridization on mechanical properties of woven kenaf fiber reinforced polyoxymethylene composite. Polymer Composites, 35(10), pp.1900-1910. Datta, J. and Kopczyńska, P., 2015. Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Industrial Crops and Products, 74, pp.566-576. 63. Di Bella, G., Fiore, V. and Valenza, A., 2010. Effect of areal weight and chemical treatment on the mechanical properties of bidirectional flax fabrics reinforced composites. Materials & Design, 31(9), pp.4098-4103. 64. Di Bella, G., Fiore, V., Galtieri, G., Borsellino, C. and Valenza, A., 2014. Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. polypropylene). Construction and Building Materials, 58, pp.159-165. 65. Dransfield, K., Baillie, C. and Mai, Y.W., 1994. Improving the delamination resistance of CFRP by stitching—a review. Composites Science and Technology, 50(3), pp.305-317. 66. El-Shekeil, Y.A., Sapuan, S.M., Jawaid, M. and Al-Shuja’a, O.M., 2014. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly (vinyl chloride)/thermoplastic polyurethane poly-blend composites. Materials & Design, 58, pp.130-135. 67. Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), pp.1552-1596. 68. Ferdous, S. and Hossain, M.S., 2017. Natural Fibre Composite (NFC): New gateway for jute, kenaf and allied fibres in automobiles and infrastructure sector. World Journal of Research and Review, 5(3), pp.35-42. 69. Fernández-Pérez, J., Cantero, J.L., Díaz-Álvarez, J. and Miguélez, M.H., 2017. Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Composite Structures, 178, pp.157-161. 70. Ferreira, F.V., Pinheiro, I.F., de Souza, S.F., Mei, L.H. and Lona, L.M., 2019. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review. Journal of Composites Science, 3(2), pp.1-17. 71. Fiore, V., Di Bella, G. and Valenza, A., 2015. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 68, pp.14-21. 72. Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M. and Valenza, A., 2016. A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering, 85, pp.150-160. 73. Fragassa, C., 2017. Marine applications of natural fibre-reinforced composites: a manufacturing case study. Advances in Applications of Industrial Biomaterials, pp.21-47. Francesconi, L. and Aymerich, F., 2017. Numerical simulation of the effect of stitching on the delamination resistance of laminated composites subjected to low-velocity impact. Composite structures, 159, pp.110-120. 74. Francucci, G., Rodríguez, E.S. and Vázquez, A., 2010. Study of saturated and unsaturated permeability in natural fiber fabrics. Composites Part A: Applied Science and Manufacturing, 41(1), pp.16-21. 75. Gaugler, M., Luedtke, J., Grigsby, W.J. and Krause, A., 2019. A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic composites. International Journal of Adhesion and Adhesives, 89, pp.66-71. 76. Ghafari-Namini, N. and Ghasemnejad, H., 2012. Effect of natural stitched composites on the crashworthiness of box structures. Materials & Design, 39, pp.484-494. 77. Ghani, M.A.A., Salleh, Z., Hyie, K.M., Berhan, M.N., Taib, Y.M.D. and Bakri, M.A.I., 2012. Mechanical properties of kenaf/fiberglass polyester hybrid composite. Procedia Engineering, 41, pp.1654-1659. 78. Ghasemnejad, H. and Aboutorabi, A., 2014. The response of natural fibre composites to impact damage: a case study. Natural Fibre Composites, pp.345-364. 79. Ghazilan, A.A., Mokhtar, H., Dawood, M.S., Aminanda, Y. and Ali, J.M., 2017. Effect of stitching on the tensile mechanical property of empty fruit bunch oil palm fiber reinforced epoxy composites. IOP Conference Series: Materials Science and Engineering, 184(1), pp.1-6. 80. Ghazilan, A.L., Mokhtar, H., and Dawood, M.S.I.S., 2016. Effect of thread material and stitch orientation on tensile mechanical property of stitched oil palm empty fruit bunch fiber reinforced epoxy composites. Journal of Built Environment, Technology and Engineering, 1, pp.282-288. 81. Gopalakrishnan, T., Jayakanth, J.J., Gnanavel, C. and Sridhar, R., 2018. Analysis of hybrid natural fiber composite for bio-medical application. International Journal of Emerging Technologies in Engineering Research, 6(4), pp.274-277. 82. Graupner, N. and Müssig, J., 2011. A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly (lactic acid)(PLA) and poly (3-hydroxybutyrate)(PHB) composites. Composites Part A: Applied Science and Manufacturing, 42(12), pp.2010-2019. 83. Graupner, N., Herrmann, A.S. and Müssig, J., 2009. Natural and man-made cellulose fibrereinforced poly (lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing, 40(6), pp.810-821. 84. Grinberg, D., Siddique, S., Le, M.Q., Liang, R., Capsal, J.F. and Cottinet, P.J., 2019. 4D printing based piezoelectric composite for medical applications. Journal of Polymer Science Part B: Polymer Physics, 57(2), pp.109-115. 85. Guerrero, M.A., Zhou, W., El Sayed, H.F., Kougias, P. and Lin, P.H., 2009. Subcapsular hematoma of the kidney secondary to paintball pellet injuries. Journal of Emergency Medicine, 36(3), pp.300-301. 86. Guillou, J., Lavadiya, D.N., Munro, T., Fronk, T., and Ban, H., 2018. From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. Applied Thermal Engineering, 128, pp.1372-1381. 87. Gupta, J.S., Allix, O., Boucard, P.A., Fanget, A. and Héreil, P.L., 2005. Fracture prediction of a 3d c/c material under impact. Composites Science and Technology, 65(3-4), pp.375-386. 88. Hamma, A., Kaci, M., Ishak, Z.M. and Pegoretti, A., 2014. Starch-graftedpolypropylene/kenaf fibres composites. Part 1: Mechanical performances and viscoelastic behaviour. Composites Part A: Applied Science and Manufacturing, 56, pp.328-335. 89. Hani, A., Rashid, A., Seang, C.T., Ahmad, R. and Mariatti, J.M., 2012. Impact and flexural properties of imbalance plain woven coir and kenaf composite. Applied Mechanics and Materials, 271, pp.81-85. 90. Hao, A., Zhao, H. and Chen, J.Y., 2013. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Composites Part B: Engineering, 54, pp.44-51. 91. Hao, A., Zhao, H., Jiang, W., Yuan, L. and Chen, J.Y., 2012. Mechanical properties of kenaf/polypropylene nonwoven composites. Journal of Polymers and the Environment, 20(4), pp.959-966. 92. Hojo, T., Xu, Z., Yang, Y. and Hamada, H., 2014. Tensile properties of bamboo, jute and kenaf mat-reinforced composite. Energy Procedia, 56, pp.72-79. 93. Holbery, J. and Houston, D., 2006. Natural-fiber-reinforced polymer composites in automotive applications. Journal of the Minerals, Metals and Materials Society, 58(11), pp.80-86. 94. Huang, Z., Sun, Y. and Musso, F., 2018. Hygrothermal performance of natural bamboo fiber and bamboo charcoal as local construction infills in building envelope. Construction and Building Materials, 177, pp.342-357. 95. Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M., 2008. Effect of fiber surfacetreatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers. Composites Science and Technology, 68(2), pp.424-432. 96. Ishak, M.R., Leman, Z., Sapuan, S.M., Edeerozey, A.M.M. and Othman, I.S., 2010. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. In IOP Conference Series: Materials Science and Engineering, 11(1), pp.1-6. 97. Islam, M.S., Church, J.S. and Miao, M., 2011. Effect of removing polypropylene fibre surface finishes on mechanical performance of kenaf/polypropylene composites. Composites Part A: Applied Science and Manufacturing, 42(11), pp.1687-1693. 98. Islam, M.S., Hasbullah, N.A.B., Hasan, M., Talib, Z.A., Jawaid, M. and Haafiz, M.M., 2015. Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 4, pp.69-76. 99. Ismail, A.E., Hassan, M.A. and Kamaruddin, K.A., 2014. Perforated impact strength of woven kenaf fiber reinforced composites. Proceeding in International Integrated Engineering Summit, 1-4 December 2014, Universiti Tun Hussein Onn Malaysia, Johor. 100. Ismail, A.E., Hasan, M.A. and Kamaruddin, K.A., 2015. Perforated impact strength of woven kenaf fiber reinforced composites. Applied Mechanics and Materials, 773, pp.43-47. 101. Ismail, H., Abdullah, A.H. and Bakar, A.A., 2010. The effects of a silane-based coupling agent on the properties of kenaf core-reinforced high-density polyethylene (HDPE)/soya powder composites. Polymer-Plastics Technology and Engineering, 49(11), pp.1095-1100. 102. Ismail, N.F., Muhamad, N., Sulong, A.B., Haron, C.H.C., Tholibon, D., Tharazi, I., MdRadzi, M.K.F. and Razak, Z., 2017. Mechanical properties of compression molded epoxy polymer composites reinforced with kenaf fibers. Journal of Mechanical Engineering, 3(2), pp.1-12. Jamal, S.K, Hassan, A.S, Wong, K.J, Hanan, U.A, Roslan, M.N., 2017. The influence of woven density on tensile properties of hybrid kenaf/ glass composites. Journal of Applied Environmental and Biological Sciences. 7(7), pp.160-166. 103. Jarukumjorn, K. and Suppakarn, N., 2009. Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Composites Part B: Engineering, 40(7), pp.623- 627. 104. Jarvi, M., Brown, G.A., Shaw, B.S. and Shaw, I., 2013. Measurements of heart rate and accelerometry to determine the physical activity level in boys playing paintball. International journal of exercise science, 6(3), pp.199-207. 105. Jayabal, S., Natarajan, U. and Sathiyamurthy, S., 2011. Effect of glass hybridization and staking sequence on mechanical behaviour of interply coir-glass hybrid laminate. Bulletin of Materials Science, 34(2), pp.293-298. 106. Jayamani, E., Hamdan, S., Rahman, M.R. and Bakri, M.K.B., 2014. Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Procedia Engineering, 97, pp.545-554. 107. Jawaid, M.H.P.S. and Khalil, H.A., 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), pp.1-18. Jensen, D.W., Pascual, J. and August, J.A., 1992. Performance of graphite/bismaleimide laminates with embedded optical fibers. I. Uniaxial tension. Smart Materials and Structures, 1(1), pp.24-30. 108. Jogur, G., Nawaz Khan, A., Das, A., Mahajan, P. and Alagirusamy, R., 2018. Impact properties of thermoplastic composites. Textile Progress, 50(3), pp.109-183. 109. John, M.J. and Anandjiwala, R.D., 2009. Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), pp.442-448. 110. Joshi, L.D., Rajgole, A.A., Hiremath, R. and Khomane, S., 2019. Experimental investigation of natural fiber with epoxy resin. International Journal of New Technology and Research, 5(4), pp.44-47. 111. Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S., 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites?. Composites Part A: Applied Science and Manufacturing, 35(3), pp.371-376. 112. Kamal, I.B., 2014. Kenaf for biocomposite: an overview. Journal of Science and Technology, 6(2), pp.41-66. 113. Kamarudin, M.K.A., Wahab, N.A., Umar, R., Saudi, A.S.M., Saad, M.H.M., Rosdi, N.R.N., Razak, S.A.A., Merzuki, M.M., Abdullah, A.S., Amirah, S. and Ridzuan, A.M., 2018. Road traffic accident in malaysia: trends, selected underlying, determinants and status intervention. International Journal of Engineering & Technology, 7(4.34), pp.112-117. 114. Kang, T.J. and Lee, S.H., 1994. Effect of stitching on the mechanical and impact properties of woven laminate composite. Journal of composite materials, 28(16), pp.1574-1587. 115. Karahan, M., Ulcay, Y., Eren, R., Karahan, N. and Kaynak, G., 2010. Investigation into the tensile properties of stitched and unstitched woven aramid/vinyl ester composites. Textile Research Journal, 80(10), pp.880-891. 116. Karahan, M., Ulcay, Y., Karahan, N. and Kuş, A., 2013. Influence of stitching parameters on tensile strength of aramid/vinyl ester composites. Materials Science, 19(1), pp.67-72. 117. Karahan, M. and Karahan, N., 2014. Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites. Fibres and Textiles in Eastern Europe, 3(105), pp.109-115. 118. Karikalan, L., Chandrasekran, M., Ramasubramanian, S. and Baskar, S., 2017. Hybridization of composites using natural and synthetic fibers for automotive application. International Journal of Scientific Research in Science and Technology, 7, pp.916-920. 119. Karthik, T. and Rathinamoorthy, R., 2017. Sustainable synthetic fibre production. Sustainable Fibres and Textiles, pp.191-240. 120. Khalid, S.N.A., Jamaluddin, M.R., Roslan, M.N., Ismail, A.E. and Zainulabidin, M.H., 2015. Effect of low-velocity impact on different density of woven kenaf fiber reinforced composite. Journal of Applied Science and Agriculture. 10(7), pp.4-8. 121. Khalil, H.A., Tehrani, M.A., Davoudpour, Y., Bhat, A.H., Jawaid, M., and Hassan, A., 2013. Natural fiber reinforced poly (vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), pp.330-356. 122. Khan, G.A., Terano, M., Gafur, M.A. and Alam, M.S., 2016. Studies on the mechanical properties of woven jute fabric reinforced poly (l-lactic acid) composites. Journal of King Saud University-Engineering Sciences, 28(1), pp.69-74. 123. Khan, T., Hameed Sultan, M.T.B. and Ariffin, A.H., 2018. The challenges of natural fiber in manufacturing, material selection, and technology application: A review. Journal of Reinforced Plastics and Composites, 37(11), pp.770-779. 124. Kim, C.H., Jo, D.H. and Choi, J.H., 2017. Failure strength of composite T-joints prepared using a new 1-thread stitching process. Composite Structures, 178, pp.225-231. 125. Kitamura, T., Ito, K., Teramura, S., Zhang, Z. and Hamada, H., 2014. Application of multilayered paper processing to hybrid random natural fiber mat. Energy Procedia, 56, pp.247-254. Kobayashi, S., Takada, K. and Nakamura, R., 2014. Processing and characterization of hemp fiber textile composites with micro-braiding technique. Composites Part A: Applied Science and Manufacturing, 59, pp.1-8. 126. Kostopoulos, V., Masouras, A., Baltopoulos, A., Vavouliotis, A., Sotiriadis, G. and Pambaguian, L., 2017. A critical review of nanotechnologies for composite aerospace structures. CEAS Space Journal, 9(1), pp.35-57. 127. Kumar, K.K., Karunakar, C., and ChandraMouli, B., 2018. Development and characterization of hybrid fibres reinforced composites based on glass and kenaf fibers. Materials Today: Proceedings, 5(6), pp.14539-14544. 128. Kumar, K.S., Siva, I., Rajini, N., Jappes, J.W. and Amico, S.C., 2016. Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Materials & Design, 90, pp.795-803. 129. Kumar, R., Ul Haq, M.I., Raina, A. and Anand, A., 2019. Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities. International Journal of Sustainable Engineering, 12(3), pp.212-220. 130. Kwon, H.J., Sunthornvarabhas, J., Park, J.W., Lee, J.H., Kim, H.J., Piyachomkwan, K., Sriroth, K. and Cho, D., 2014. Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Composites Part B: Engineering, 56, pp.232-237. La Mantia, F.P. and Morreale, M., 2011. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), pp.579-588. 131. Lampke, T., Mishra, S. and Bismarck, A., 2005. Plant fibers as reinforcement for green composites. Natural Fibers, Biopolymers, and Biocomposites, pp.52-128. 132. Larsson, F., 1997. Damage tolerance of a stitched carbon/epoxy laminate. Composites Part A: Applied Science and Manufacturing, 28(11), pp.923-934. 133. Lasikun, Ariawan, D., Surojo, E. and Triyono, J., 2018. Effect of fiber orientation on tensile and impact properties of Zalacca Midrib fiber-HDPE composites by compression molding. AIP Conference Proceedings, 1931(1), pp.1-5. 134. Latif, W., Basit, A., Ali, Z. and Ahmad Baig, S., 2018. The mechanical and comfort properties of cotton and regenerated fibers blended woven fabric. International Journal of Clothing Science and Technology, 30(1), pp.112-121. 135. Lau, K.T., Hung, P.Y., Zhu, M.H. and Hui, D., 2018. Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, pp.222-233. 136. Law, T.T. and Ishak, Z.M., 2011. Water absorption and dimensional stability of short kenaf fiber‐filled polypropylene composites treated with maleated polypropylene. Journal of Applied Polymer Science, 120(1), pp.563-572. 137. Lee, B.H., Kim, H.S., Lee, S., Kim, H.J. and Dorgan, J.R., 2009. Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process. Composites Science and Technology, 69(15), pp.2573-2579. 138. Lee, J.S. and Kim, J.W., 2017. Impact response of carbon fibre fabric/thermoset-thermoplastic combined polymer composites. Advanced Composites Letters, 26(3), pp.82-88. 139. Lee, J.S., Hong, S.J., Yu, W.R. and Kang, T.J., 2007. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Composites Science and Technology, 67(3-4), pp.357-366. 140. Liu, D., 1990. Photoelastic study on composite stitching. Experimental Techniques, 14(1), pp.25-27. 141. Liu, Q. and Hughes, M., 2008. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 39(10), pp.1644-1652. 142. Lopresto, V., Melito, V., Leone, C. and Caprino, G., 2006. Effect of stitches on the impact behaviour of graphite/epoxy composites. Composites Science and Technology, 66(2), pp.206-214. 143. Luedtke, J., Gaugler, M., Grigsby, W.J. and Krause, A., 2019. Understanding the development of interfacial bonding within PLA/wood-based thermoplastic sandwich composites. Industrial Crops and Products, 127, pp.129-134. 144. Lyu, M.Y. and Choi, T.G., 2015. Research trends in polymer materials for use in lightweight vehicles. International journal of precision engineering and manufacturing, 16(1), pp.213-220. 145. Machado, J.J.M., Gamarra, P.R., Marques, E.A.S. and da Silva, L.F., 2018. Improvement in impact strength of composite joints for the automotive industry. Composites Part B: Engineering, 138, pp.243-255. 146. Mahjoub, R., Yatim, J.M., Sam, A.R.M. and Raftari, M., 2014. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials & Design, 64, pp.640- 649. 147. Mahzabin, M.S., Hock, L.J., Hossain, M.S. and Kang, L.S., 2018. The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Construction and Building Materials, 178, pp.518-528. 148. Malkapuram, R., Kumar, V. and Negi, Y.S., 2009. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 28(10), pp.1169-1189. 149. Manan, M.M.A. and Várhelyi, A., 2012. Motorcycle fatalities in Malaysia. IATSS research, 36(1), pp.30-39. Mastura, M.T., Sapuan, S.M., Mansor, M.R. and Nuraini, A.A., 2017. Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. The International Journal of Advanced Manufacturing Technology, 89(5-8), pp.2203-2219. 150. Mazumdar, S., 2002. Composites manufacturing: materials, product, and process engineering. Boca Raton, Fla.: CRC Press. pp.29-32. 151. Menon, A.R.R., Ezema, I.C., Obayi, C.S. and Omah, A.D., 2014. Effect of surface treatment and fiber orientation on the tensile and morphological properties of banana stem fiber reinforced natural rubber composite. Journal of Minerals and Materials Characterization and Engineering, 2(3), pp.216-222. 152. Meon, M.S., Othman, M.F., Husain, H., Remeli, M.F. and Syawal, M.S.M., 2012. Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Engineering, 41, pp.1587-1592. 153. Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K. and Tripathy, S.S., 2003. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 63(10), pp.1377-1385. 154. Misnon, M.I., Islam, M.M., Epaarachchi, J.A. and Lau, K.T., 2014. Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 59, pp.359-368. 155. Misnon, M.I., Islam, M.M., Epaarachchi, J.A. and Lau, K.T., 2015. Analyses of woven hemp fabric characteristics for composite reinforcement. Materials & Design, 66, pp.82-92. 156. Misri, S., Ishak, M.R., Sapuan, S.M. and Leman, Z., 2016. Split-disk properties of kenaf yarn fibre-reinforced unsaturated polyester composites using filament winding method. Pertanika Journal of Science and Technology, 24(2), pp.475-482. 157. Mochane, M.J., Mokhena, T.C., Mokhothu, T.H., Mtibe, A., Sadiku, E.R., Ray, S.S., Ibrahim, I.D. and Daramola, O.O., 2019. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polymer Letters, 13(2), pp.159-198. 158. Mohanty, A.K., Misra, M. and Drzal, L.T., 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Composite Interfaces, 8(5), pp.313-343. 159. Mohanty, A.K., Misra, M. and Hinrichsen, G., 2000. Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular materials and Engineering, 276(1), pp.1-24. 160. Mountasir, A., Hoffmann, G., Cherif, C., Löser, M. and Großmann, K., 2015. Competitive manufacturing of 3D thermoplastic composite panels based on multi-layered woven structures for lightweight engineering. Composite Structures, 133, pp.415-424. 161. Mouritz, A.P. and Cox, B.N., 2000. A mechanistic approach to the properties of stitched laminates. Composites part A: Applied Science and Manufacturing, 31(1), pp.1-27. 162. Mouritz, A.P., Leong, K.H. and Herszberg, I., 1997. A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 28(12), pp.979-991. 163. Mouritz, A.P., 2004. Fracture and tensile fatigue properties of stitched fibreglass composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 218(2), pp.87-93. 164. Nanthagopal, V., Senthilram, T. and Dev, V.G., 2014. Flexural and impact studies on stitched self-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 27(11), pp.1504-1514. 165. Navaranjan, N. and Neitzert, T., 2017. Impact Strength of Natural Fibre Composites Measured by Different Test Methods: A Review. In MATEC Web of Conferences (Vol. 109, pp.1-7). EDP Sciences. 166. Nezami, F.N., Gereke, T. and Cherif, C., 2016. Analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications. Composites Part A: Applied Science and Manufacturing, 84, pp.406-416. 167. Nishino, T., Hirao, K., Kotera, M., Nakamae, K. and Inagaki, H., 2003. Kenaf reinforced biodegradable composite. Composites Science and Technology, 63(9), pp.1281-1286. 168. Nosbi, N., Akil, H.M., Ishak, Z.M. and Bakar, A.A., 2010. Degradation of compressive properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Materials & Design, 31(10), pp.4960-4964. 169. Obele, C. and Ishidi, E., 2015. Mechanical properties of coir fiber reinforced epoxy resin composites for helmet shell. Industrial Engineering Letters, 5(7), pp.67-74. 170. Özdemir, H. and Içten, B.M., 2018. The mechanical performance of plain and plain derivative woven fabrics reinforced composites: tensile and impact properties. The Journal of the Textile Institute, 109(1), pp.133-145. 171. Pang, C., Shanks, R.A. and Daver, F., 2015. Characterization of kenaf fiber composites prepared with tributyl citrate plasticized cellulose acetate. Composites Part A: Applied Science and Manufacturing, 70, pp.52-58. 172. Pang, F. and Wang, C.H., 1996. A creep study on stitched fibre/resin composites. In Proceedings of the First Australasian Congress on Applied Mechanics: ACAM-96 (pp. 357-361). Institution of Engineers, Australia. 173. Panyasart, K., Chaiyut, N., Amornsakchai, T. and Santawitee, O., 2014. Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56, pp.406-413. 174. Parikh, D.V., Calamari, T.A., Sawhney, A.P.S., Blanchard, E.J., Screen, F.J., Warnock, M., Muller, D.H. and Stryjewski, D.D., 2002. Improved chemical retting of kenaf fibers. Textile Research Journal, 72(7), pp.618-624. 175. Park, C.H. and Lee, W.I., 2012. Compression molding in polymer matrix composites. Manufacturing techniques for polymer matrix composites (PMCs) (pp. 47-94). Woodhead Publishing. 176. Park, J.M., Son, T.Q., Jung, J.G. and Hwang, B.S., 2006. Interfacial evaluation of single Ramie and Kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission. Composite Interfaces, 13(2-3), pp.105-129. 177. Pearce, N.R.L., Guild, F.J. and Summerscales, J., 1998. An investigation into the effects of fabric architecture on the processing and properties of fibre reinforced composites produced by resin transfer moulding. Composites Part A: Applied Science and Manufacturing, 29(1), pp.19-27. 178. Peijs, T., 2003. Composites for recyclability. Materials today, 6(4), pp.30-35. 179. Pinnoji, P.K. and Mahajan, P., 2010. Analysis of impact-induced damage and delamination in the composite shell of a helmet. Materials & Design, 31(8), pp.3716-3723. 180. Prabhakaran, S. and Kumar, M.S., 2012. Development of glass fiber reinforced polymer composite ceiling fan blade. International Journal of Engineering Research and Development, 2(3), pp.59-64. Prakash, J.D., Krishnan, G.S., Ramalingam, P.S. and Murugan, C., 2018. Performance analysis of stitched and unstitched glass fiber with jute material using epoxy laminates. International journal of research, 7(12), pp.2236-6124. 181. Prodromou, A.G. and Chen, J., 1997. On the relationship between shear angle and wrinkling of textile composite preforms. Composites Part A: Applied Science and Manufacturing, 28(5), pp.491-503. 182. Putra, A., Or, K.H., Selamat, M.Z., Nor, M.J.M., Hassan, M.H. and Prasetiyo, I., 2018. Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, pp.9-15. 183. Rafiquzzaman, M., Islam, M.T., Hossain, M.R., Rabby, M.F. and Hashar, M.R., 2017. Fabrication and performance test of glass-bamboo fiber based industry safety helmet. American Journal of Mechanical and Materials Engineering, 1(2), pp.20-25. 184. Rajesh, M., Pitchaimani, J. and Rajini, N., 2016. Free Vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam. Procedia Engineering, 144, pp.1055-1059. 185. Rajesh, M. and Pitchaimani, J., 2017. Mechanical and dynamic mechanical behaviour of novel glass–natural fibre intra-ply woven polyester composites. Sādhanā, 42(7), pp.1215- 1223. 186. Rajesh, M., Singh, S.P. and Pitchaimani, J., 2018. Mechanical behavior of woven natural fiber fabric composites: Effect of weaving architecture, intra-ply hybridization and stacking sequence of fabrics. Journal of Industrial Textiles, 47(5), pp.938-959. 187. Ramakrishnan, S., Wang, X., Sanjayan, J. and Wilson, J., 2017. Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Applied energy, 207, pp.654-664. Ramesh, P., Durga Prasad, B. and Narayana, K.L., 2018. Characterization of kenaf fiber and its composites: A review. Journal of Reinforced Plastics and Composites, 37(11), pp.731- 737. 188. Ramnath, B.V., Kokan, S.J., Raja, R.N., Sathyanarayanan, R., Elanchezhian, C., Prasad, A.R. and Manickavasagam, V.M., 2013. Evaluation of mechanical properties of abaca–jute– glass fibre reinforced epoxy composite. Materials & Design, 51, pp.357-366. 189. Rashdi, A.A.A., Sapuan, S.M., Ahmad, M.M.H.M. and Abdan, K.B., 2009. Review of kenaf fiber reinforced polymer composites. Polimery, 54(11-12), pp.777-780. 190. Rashidi, A. and Milani, A.S., 2018. Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders. Composites Part A: Applied Science and Manufacturing, 105, pp.300-309. 191. Rassmann, S., Paskaramoorthy, R. and Reid, R.G., 2011. Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates. Materials & Design, 32(3), pp.1399-1406. 192. Rassmann, S., Reid, R.G. and Paskaramoorthy, R., 2010. Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates.Composites Part A: Applied Science and Manufacturing, 41(11), pp.1612-1619. 193. Ravandi, M., Teo, W.S., Tran, L.Q.N., Yong, M.S. and Tay, T.E., 2016. The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates. Materials & Design, 109, pp.659-669. 194. Ravandi, M., Teo, W.S., Tran, L.Q.N., Yong, M.S. and Tay, T.E., 2017. Low velocity impact performance of stitched flax/epoxy composite laminates. Composites Part B: Engineering, 117, pp.89-100. 195. Ravandi, M., Teo, W.S., Yong, M.S. and Tay, T.E., 2018. Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites. Journal of Materials Science, 53(6), pp.4173-4188. 196. Reddy, N., 2017. Composites reinforced with hollow natural organic fibrous structures. Porous lightweight composites reinforced with fibrous structures (pp. 29-58). Springer, Berlin, Heidelberg. 197. Ren, X., Qiu, R., Fifield, L.S., Simmons, K.L. and Li, K., 2012. Effects of surface treatments on mechanical properties and water resistance of kenaf fiber-reinforced unsaturated polyester composites. Journal of Adhesion Science and Technology, 26(18-19), pp.2277-2289. 198. Ribot, N.M.H., Ahmad, Z. and Mustaffa, N.K., 2011. Mechanical properties of kenaffibre composite using co-cured in-line fibre joint. International Journal of Engineering Science and Technology, 3(4), pp.3526-3534. 199. Riccio, A., Linde, P., Raimondo, A., Buompane, A. and Sellitto, A., 2017. On the use of selective stitching in stiffened composite panels to prevent skin-stringer debonding. Composites Part B: Engineering, 124, pp.64-75. 200. Roy, P., Tadele, D., Defersha, F., Misra, M. and Mohanty, A.K., 2019. Environmental and economic prospects of biomaterials in the automotive industry. Clean Technologies and Environmental Policy, 21, pp.1535-1548. 201. Saba, N., Jawaid, M., Alothman, O.Y. and Paridah, M.T., 2016. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106, pp.149-159. 202. Saboktakin, A., 2019. 3D textile preforms and composites for aircraft strcutures: A review. International Journal of Aviation, Aeronautics, and Aerospace, 6(1), pp.1-40. 203. Safri, S.N.A., Sultan, M.T.H., Jawaid, M. and Jayakrishna, K., 2018. Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, pp.112-121. 204. Saheb, D.N. and Jog, J.P., 1999. Natural fiber polymer composites: a review. Advances in Polymer Technology, 18(4), pp.351-363. 205. Saiman, M.P., Wahab, M.S. and Wahit, M.U., 2014. The effect of fabric weave on the tensile strength of woven kenaf reinforced unsaturated polyester composite. In Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014, pp.25- 29. Springer Singapore, 2014. 206. Salim, M.S., Ishak, M., Arifin, Z. and Abdul Hamid, S., 2011. Effect of stitching density of nonwoven fiber mat towards mechanical properties of kenaf reinforced epoxy composites produced by resin transfer moulding (RTM). Key Engineering Materials, 471, pp.987-992. 207. Salleh, F.M., Hassan, A., Yahya, R. and Azzahari, A.D., 2014. Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Composites Part B: Engineering, 58, pp.259-266. 208. Salleh, Z., Taib, Y.M., Hyie, K.M., Mihat, M., Berhan, M.N. and Ghani, M.A.A., 2012. Fracture toughness investigation on long kenaf/woven glass hybrid composite due to water absorption effect. Procedia Engineering, 41, pp.1667-1673. 209. Salman, S.D., Sharba, M.J., Leman, Z., Sultan, M.T.H., Ishak, M.R. and Cardona, F., 2015. Physical, mechanical, and morphological properties of woven kenaf/polymer composites produced using a vacuum infusion technique. International Journal of Polymer Science, 20(2015), pp.1-10. 210. Sánchez, F., García, J.A., Chinesta, F., Gascón, L., Zhang, C., Liang, Z. and Wang, B., 2006. A process performance index based on gate-distance and incubation time for the optimization of gate locations in liquid composite molding processes. Composites Part A: Applied Science and Manufacturing, 37(6), pp.903-912. 211. Sanjay, M.R. and Yogesha, B., 2018. Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles, 47(7), pp.1830-1848. 212. Sanjay, M.R., Arpitha, G.R. and Yogesha, B., 2015. Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: a review. Materials Today: Proceedings, 2(4), pp.2959-2967. 213. Sanjay, M.R., Arpitha, G.R., Senthamaraikannan, P., Kathiresan, M., Saibalaji, M.A. and Yogesha, B., 2019. The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. Journal of Natural Fibers, 16(4), pp.600-612. 214. Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S. and Pradeep, S., 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, pp.566-581. 215. Sapuan, S.M., Pua, F.L., El-Shekeil, Y.A. and Al-Oqla, F.M., 2013. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design, 50, pp.467-470. 216. Satya, P., Karan, M., Kar, C.S., Mahapatra, A.K., and Mahapatra, B.S., 2013. Assessment of molecular diversity and evolutionary relationship of kenaf (Hibiscus cannabinus L.), roselle (H. sabdariffa L.) and their wild relatives. Plant systematics and evolution, 299(3), pp.619-629. 217. Sbicca, J.A. and Hatch, R.L., 2012. Target lesions and other paintball injuries. The Journal of the American Board of Family Medicine, 25(1), pp.124-127. 218. Scherer, R. and Friedrich, K., 1991. Inter-and intraply-slip flow processes during thermoforming of CF/PP-laminates. Composites Manufacturing, 2(2), pp.92-96. 219. Sharba, M.J., Leman, Z., Sultan, M.T., Ishak, M.R. and Hanim, M.A.A., 2015. Effects of kenaf fiber orientation on mechanical properties and fatigue life of glass/kenaf hybrid composites. BioResources, 11(1), pp.1448-1465. 220. Shibata, S., Cao, Y. and Fukumoto, I., 2008. Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Composites part A: Applied science and manufacturing, 39(4), pp.640-646. 221. Shibata, S., Cao, Y. and Fukumoto, I., 2006. Lightweight laminate composites made from kenaf and polypropylene fibres. Polymer Testing, 25(2), pp.142-148. 222. Shukor, F., Hassan, A., Islam, M.S., Mokhtar, M. and Hasan, M., 2014. Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design (1980-2015), 54, pp.425- 429. 223. Shyr, T.W. and Pan, Y.H., 2003. Impact resistance and damage characteristics of composite laminates. Composite Structures, 62(2), pp.193-203. 224. Sonar, T., Patil, S., Deshmukh, V. and Acharya, R., 2015. Natural fiber reinforced polymer composite material-a review. IOSR Journal of Mechanical and Civil Engineering, 6, pp.142- 147. 225. Song, Y.S., Lee, J.T., Ji, D.S., Kim, M.W., Lee, S.H. and Youn, J.R., 2012. Viscoelastic and thermal behavior of woven hemp fiber reinforced poly (lactic acid) composites. Composites Part B: Engineering, 43(3), pp.856-860. 226. Sreenivasan, S., Sulaiman, S., Ariffin, M.K.A.M., Baharudin, B.H.T. and Abdan, K., 2018. Physical properties of novel kenaf short fiber reinforced bulk molding compounds (BMC) for compression moulding. Materials Today: Proceedings, 5(1), pp.1226-1232. 227. Srinivas, K., Naidu, A.L. and Raju Bahubalendruni, M.V.A., 2017. A review on chemical and mechanical properties of natural fiber reinforced polymer composites. International Journal of Performability Engineering, 13(2), pp.189-200. 228. Stewart, R., 2011. Thermoplastic composites—recyclable and fast to process. Reinforced Plastics, 55(3), pp.22-28. 229. Stolyarov, O., Quadflieg, T. and Gries, T., 2015. Effects of fabric structures on the tensile properties of warp-knitted fabrics used as concrete reinforcements. Textile Research Journal, 85(18), pp.1934-1945. 230. Subash, T. and Pillai, S.N., 2015. Bast fibers reinforced green composites for aircraft indoor structures applications. Journal of Chemical and Pharmaceutical Sciences, 7, pp.305-307. 231. Subasinghe, A.D.L., Das, R. and Bhattacharyya, D., 2015. Fiber dispersion during compounding/injection molding of PP/kenaf composites: flammability and mechanical properties. Materials & Design, 86, pp.500-507. 232. Sugun, B.S. and Rao, R.M.V.G.K., 2000. Mechanical behaviour of woven and multiaxial fabric composites. Journal of Reinforced Plastics and Composites, 19(9), pp.743-753. 233. Suhaimi, S.A., Hassim, N., Nor, M.A., Ahmad, M.R., Salleh, J., 2018. The effect of stitch density and stitching patterns on the puncture resistance of high strength plain woven fabric. Current Trends Fashion Technology Textile Engineering, 2(5), pp.1-7. 234. Suriani, M.J., Ali, A., Khalina, A., Sapuan, S.M. and Abdullah, S., 2012. Detection of defects in kenaf/epoxy using infrared thermal imaging technique. Procedia Chemistry, 4, pp.172-178. 235. Taj, S., Munawar, M.A. and Khan, S., 2007. Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy of Sciences, 44(2), pp.129-144. 236. Takatoya, T. and Susuki, I., 2005. In-plane and out-of-plane characteristics of threedimensional textile composites. Journal of Composite Materials, 39(6), pp.543-556. 237. Tan, K.T., Watanabe, N. and Iwahori, Y., 2010. Effect of stitch density and stitch thread thickness on low-velocity impact damage of stitched composites. Composites Part A: Applied Science and Manufacturing, 41(12), pp.1857-1868. 238. Tan, K.T., Watanabe, N., Iwahori, Y. and Ishikawa, T., 2012. Effect of stitch density and stitch thread thickness on compression after impact strength and response of stitched composites. Composites Science and Technology, 72(5), pp.587-598. 239. Tan, K.T., Yoshimura, A., Watanabe, N., Iwahori, Y. and Ishikawa, T., 2013. Effect of stitch density and stitch thread thickness on damage progression and failure characteristics of stitched composites under out-of-plane loading. Composites Science and Technology, 74, pp.194-204. 240. Thije, R.H.W. and Akkerman, R., 2010. Finite element simulations of laminated composites forming processes. International journal of material forming, 3(1), pp.715-718. Thakur, V.K. and Thakur, M.K., 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, pp.102-117. 241. Thirumalini, S. and Rajesh, M., 2017. Reinforcement effect on mechanical properties of bio-fiber composite. Technology, 8(7), pp.160-166. 242. Thwe, M.M. and Liao, K., 2002. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites Part A: Applied Science and Manufacturing, 33(1), pp.43-52. 243. Thwe, M.M. and Liao, K., 2003. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Science and Technology, 63(3), pp.375-387. 244. Tong, L., Mouritz, A.P. and Bannister, M.K., 2002. 3D fibre reinforced polymer composites. Elsevier, pp.163-204. 245. Trask, R.S., Williams, G.J. and Bond, I.P., 2006. Bioinspired self-healing of advanced composite structures using hollow glass fibres. Journal of the Royal Society Interface, 4(13), pp.363-371. 246. Vanclooster, K., Lomov, S.V. and Verpoest, I., 2009, July. On the formability of multilayered fabric composites. In Proceeding 17th International Conference Composite Materials (pp. 1-10). 247. Van Rijswijk, K. and Bersee, H.E.N., 2007. Reactive processing of textile fiber-reinforced thermoplastic composites–An overview. Composites Part A: Applied Science and Manufacturing, 38(3), pp.666-681. 248. Vasudevan, A., Senthil Kumaran, S., Naresh, K. and Velmurugan, R., 2018. Experimental and analytical investigation of thermo-mechanical responses of pure epoxy and carbon/Kevlar/S-glass/E-glass/epoxy interply hybrid laminated composites for aerospace applications. International Journal of Polymer Analysis and Characterization, 23(7), pp.591-605. 249. Velmurugan, R. and Manikandan, V., 2007. Mechanical properties of palmyra/glass fiber hybrid composites. Composites Part A: Applied Science and Manufacturing, 38(10), pp.2216-2226. 250. Vieille, B., Casado, V.M. and Bouvet, C., 2014. Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic-and thermosettingcomposites: a comparative study. Composite Structures, 110, pp.207-218. 251. Wambua, P., Ivens, J. and Verpoest, I., 2003. Natural fibres: can they replace glass in fibre reinforced plastics. Composites Science and Technology, 63(9), pp.1259-1264. 252. Wang, C., Roy, A., Chen, Z. and Silberschmidt, V.V., 2017. Braided textile composites for sports protection: Energy absorption and delamination in impact modelling. Materials & Design, 136, pp.258-269. 253. Wang, Y., Zhang, J., Fang, G., Zhang, J., Zhou, Z. and Wang, S., 2018. Influence of temperature on the impact behavior of woven-ply carbon fiber reinforced thermoplastic composites. Composite Structures, 185, pp.435-445. 254. Weimer, C. and Mitschang, P., 2001. Aspects of the stitch formation process on the quality of sewn multi-textile-preforms. Composites Part A: Applied Science and Manufacturing, 32(10), pp.1477-1484. Wielage, B., Lampke, T., Utschick, H. and Soergel, F., 2003. Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties. Journal of Materials Processing Technology, 139(1), pp.140-146. 255. Wilhelmsson, D., Gutkin, R., Edgren, F. and Asp, L.E., 2018. An experimental study of fibre waviness and its effects on compressive properties of unidirectional NCF composites. Composites Part A: Applied Science and Manufacturing, 107, pp.665-674. 256. Wong, J.J. and Chen, H.H., 2017, July. Sewing for life: the development of sewing machine in the tune of women life experience in Taiwan. In International Conference on CrossCultural Design, pp. 469-481. Springer, Cham. 257. Wu, Y., Xia, C., Cai, L., Garcia, A.C. and Shi, S.Q., 2018. Development of natural fiberreinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, pp.92-100. 258. Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z. and Zainudin, E.S., 2018. Review of kenaf reinforced hybrid biocomposites: potential for defence applications. Current Analytical Chemistry, 14(3), pp.226-240. 259. Yang, B., Nar, M., Visi, D.K., Allen, M., Ayre, B., Webber, C.L., Lu, H. and D’Souza, N.A., 2014. Effects of chemical versus enzymatic processing of kenaf fibers on poly (hydroxybutyrate-co-valerate)/poly (butylene adipate-co-terephthalate) composite properties. Composites Part B: Engineering, 56, pp.926-933. 260. Yang, T., Zhang, J., Mouritz, A.P. and Wang, C.H., 2013. Healing of carbon fibre–epoxy composite T-joints using mendable polymer fibre stitching. Composites Part B: Engineering, 45(1), pp.1499-1507. 261. Yan, L., Chouw, N. and Jayaraman, K., 2014. Flax fibre and its composites–a review. Composites Part B: Engineering, 56, pp.296-317. 262. Yan, L., Kasal, B. and Huang, L., 2016. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering, 92, pp.94-132. 263. Yi, L. and Jinlian, H., 2006. Effect of stitch structure on permeability of mono-filament multi-layer woven fabrics. Research Journal of Textile and Apparel, 10(3), pp.8-16. Yousif, B.F., Shalwan, A., Chin, C.W. and Ming, K.C., 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design, 40, pp.378-385. 264. Yudhanto, A., Lubineau, G., Ventura, I.A., Watanabe, N., Iwahori, Y. and Hoshi, H., 2015. Damage characteristics in 3D stitched composites with various stitch parameters under inplane tension. Composites Part A: Applied Science and Manufacturing, 71, pp.17-31. 265. Yuhazri, M.Y., Amirhafizan, M.H., Abdullah, A., Sihombing, H., Nirmal, U., Saarah, A.B. and Fadzol, O.M., 2016a, November. The effect of lamina intraply hybrid composites on the tensile properties of various weave designs. In IOP Conference Series: Materials Science and Engineering, 160(1), pp.1-15. 266. Yuhazri, M.Y., Amirhafizan, M.H., Abdullah, A., Sihombing, H., Saarah, A.B. and Fadzol, O.M., 2016b, November. The effect of various weave designs on mechanical behavior of lamina intraply composite made from kenaf fiber yarn. In IOP Conference Series: Materials Science and Engineering, 160(1), pp.1-10. 267. Yu, K., Li, L., Yu, J., Xiao, J., Ye, J. and Wang, Y., 2018. Feasibility of using ultra-high ductility cementitious composites for concrete structures without steel rebar. Engineering Structures, 170, pp.11-20. 268. Yu, T., Ren, J., Li, S., Yuan, H. and Li, Y., 2010. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4), pp.499-505. 269. Zampaloni, M., Pourboghrat, F., Yankovich, S.A., Rodgers, B.N., Moore, J., Drzal, L.T., Mohanty, A.K. and Misra, M., 2007. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing, 38(6), pp.1569-1580. 270. Zamri, M.H., Osman, M.R., Akil, H.M., Shahidan, M.H.A. and Ishak, Z.M., 2016. Development of green pultruded composites using kenaf fibre: influence of linear mass density on weathering performance. Journal of Cleaner Production, 125, pp.320-330. 271. Zhang, H., 2011. The Basic Properties of Building Materials. Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, pp.7-28. 272. Zhang, L. and Miao, M., 2010. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Composites Science and Technology, 70(1), pp.130-135. 273. Zhang, X., Chen, Y. and Hu, J., 2018. Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, pp.22-34. 274. Zhao, N., Rödel, H., Herzberg, C., Gao, S.L. and Krzywinski, S., 2009. Stitched glass/PP composite. Part I: Tensile and impact properties. Composites Part A: Applied Science and Manufacturing, 40(5), pp.635-643. 275. Zhao, W. and Kapania, R.K., 2019a. Bilevel programming weight minimization of composite flying-wing aircraft with curvilinear spars and ribs. AIAA Journal, 57(6), pp.2594-2608. 276. Zhao, W. and Kapania, R.K., 2019b. Prestressed vibration of stiffened variable-angle tow laminated plates. AIAA Journal, 57(6), pp.2575-2593. 277. Zheng, Y., Cheng, X. and Yasir, B., 2012. Effect of stitching on plain and open-hole strength of CFRP laminates. Chinese Journal of Aeronautics, 25(3), pp.473-484. 278. Zhou, G., Sim, L.M., Brewster, P.A. and Giles, A.R., 2004. Through-the-thickness mechanical properties of smart quasi-isotropic carbon/epoxy laminates. Composites Part A: Applied Science and Manufacturing, 35(7-8), pp.797-815. 279. Zhu, J., Zhu, H., Njuguna, J. and Abhyankar, H., 2013. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials, 6(11), pp.5171-5198. 280. Zonatti, W.F., Guimarães, B.M.G., Duleba, W. and Ramos, J.B., 2015. Thermoset composites reinforced with recycled cotton textile residues. Textiles and Clothing Sustainability, 1(1), pp.1-1