The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor

The prime motivation to the renewed interest in meso and micro-scale power generation is the limited energy resources and the strong demand of long-lasting power sources for electronics devices. The thermal energy from the micro combustors can be converted into electrical energy. However, the main o...

Full description

Saved in:
Bibliographic Details
Main Author: Md Nor, Nur Umairah
Format: Thesis
Language:English
English
Published: 2020
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/25489/1/The%20Effect%20Of%20Geometry%20Configuration%20On%20Flame%20Stabilization%20In%20Micro%20Combustor.pdf
http://eprints.utem.edu.my/id/eprint/25489/2/The%20Effect%20Of%20Geometry%20Configuration%20On%20Flame%20Stabilization%20In%20Micro%20Combustor.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.25489
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Abdul Munir, Fudhail

topic T Technology (General)
TJ Mechanical engineering and machinery
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Md Nor, Nur Umairah
The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor
description The prime motivation to the renewed interest in meso and micro-scale power generation is the limited energy resources and the strong demand of long-lasting power sources for electronics devices. The thermal energy from the micro combustors can be converted into electrical energy. However, the main obstacle that limits the use of micro combustor is difficulty in stabilizing flame. This difficulty is mainly related to the substantial heat losses due to large surface area to volume ratio. Hence, purposed of this research focuses mainly on determining the factors that affect the flame stabilization in micro-scale combustors with stainless steel wire mesh. The factors focusing on the geometry configuration of the combustor which are the inner diameter of the combustor and the number of stainless-steel wire mesh. A three-dimensional (3-D) numerical model was developed. Computational Fluid Dynamics (CFD) simulation were then performed using the numerical model. The results of the simulations are analyzed based on the flame stability in the micro combustor. The results show that a few of these factors have significant effect on the flame stability in micro scale combustors. The flame stability can be improved by increasing the inner diameter of the combustor. As for the number of stainless steel wire mesh, when the number of stainless steel wire mesh doubled, the burning velocity of the flame also increase resulting to the more stable flame with in the combustor. These findings are important for future improvement of the proposed micro-scale combustor with wire mesh.
format Thesis
qualification_name Master of Philosophy (M.Phil.)
qualification_level Master's degree
author Md Nor, Nur Umairah
author_facet Md Nor, Nur Umairah
author_sort Md Nor, Nur Umairah
title The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor
title_short The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor
title_full The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor
title_fullStr The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor
title_full_unstemmed The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor
title_sort effect of geometry configuration on flame stabilization in micro combustor
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty Of Mechanical Engineering
publishDate 2020
url http://eprints.utem.edu.my/id/eprint/25489/1/The%20Effect%20Of%20Geometry%20Configuration%20On%20Flame%20Stabilization%20In%20Micro%20Combustor.pdf
http://eprints.utem.edu.my/id/eprint/25489/2/The%20Effect%20Of%20Geometry%20Configuration%20On%20Flame%20Stabilization%20In%20Micro%20Combustor.pdf
_version_ 1747834132330708992
spelling my-utem-ep.254892022-01-06T11:32:13Z The Effect Of Geometry Configuration On Flame Stabilization In Micro Combustor 2020 Md Nor, Nur Umairah T Technology (General) TJ Mechanical engineering and machinery The prime motivation to the renewed interest in meso and micro-scale power generation is the limited energy resources and the strong demand of long-lasting power sources for electronics devices. The thermal energy from the micro combustors can be converted into electrical energy. However, the main obstacle that limits the use of micro combustor is difficulty in stabilizing flame. This difficulty is mainly related to the substantial heat losses due to large surface area to volume ratio. Hence, purposed of this research focuses mainly on determining the factors that affect the flame stabilization in micro-scale combustors with stainless steel wire mesh. The factors focusing on the geometry configuration of the combustor which are the inner diameter of the combustor and the number of stainless-steel wire mesh. A three-dimensional (3-D) numerical model was developed. Computational Fluid Dynamics (CFD) simulation were then performed using the numerical model. The results of the simulations are analyzed based on the flame stability in the micro combustor. The results show that a few of these factors have significant effect on the flame stability in micro scale combustors. The flame stability can be improved by increasing the inner diameter of the combustor. As for the number of stainless steel wire mesh, when the number of stainless steel wire mesh doubled, the burning velocity of the flame also increase resulting to the more stable flame with in the combustor. These findings are important for future improvement of the proposed micro-scale combustor with wire mesh. 2020 Thesis http://eprints.utem.edu.my/id/eprint/25489/ http://eprints.utem.edu.my/id/eprint/25489/1/The%20Effect%20Of%20Geometry%20Configuration%20On%20Flame%20Stabilization%20In%20Micro%20Combustor.pdf text en public http://eprints.utem.edu.my/id/eprint/25489/2/The%20Effect%20Of%20Geometry%20Configuration%20On%20Flame%20Stabilization%20In%20Micro%20Combustor.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=118374 mphil masters Universiti Teknikal Malaysia Melaka Faculty Of Mechanical Engineering Abdul Munir, Fudhail 1. Aono, H., Yamakawa, S., Iwamura, K., Honami, S., & Ishikawa, H. (2017). Straight and curved type micro dielectric barrier discharge plasma actuators for active flow control. Experimental Thermal and Fluid Science, 88,16-23. doi:https://doi.org/10.1016/j.expthermflusci.2017.05.005 2. Aravind, B., Khandelwal, B., Ramakrishna, P. A., & Kumar, S. (2020). Towards the development of a high power density, high efficiency, micro power generator. Applied Energy, 261. doi:10.1016/j.apenergy.2019.114386 3. Bagheri, G., Hosseini, S. E., & Wahid, M. A. (2014). Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture. Applied Thermal Engineering, 67(1-2), 266-272. doi:10.1016/j.applthermaleng.2014.03.040 4. Bani, S., Pan, J., Tang, A., Lu, Q., & Zhang, Y. (2018). Micro combustion in a porous media for thermophotovoltaic power generation. Applied Thermal Engineering, 129, 596-605. doi:10.1016/j.applthermaleng.2017.10.024 5. Chen, M., & Buckmaster, J. (2004). Modelling of combustion and heat transfer in Swiss roll micro-scale combustors. Combustion Theory and Modelling, 5(4), 701-720. doi:10.1088/1364- 7830/8/4/003 6. Chia, L, C., & Feng, B. (2007). The development of a micropower (micro thermophotovoltaic) device. Journal of Power Sources, /65(1), 455-480. doi:10.1016/j.jpowsour.2006.12.006 7. Choi, W., Kwon, S., & Dongshin, H. (2008). Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor. International Journal of Hydrogen Energy, 33(9),2400-2408. doi:10.1016/j.ijhydene.2008.02.070 8. Chou, S. K., Yang, W. M., Chua, K. J., Li, J., & Zhang, K. L. (2011). Development of micro power generators- A review. Applied Energy, 88( 1 ),1-16. doi:10.1016/j.apenergy.2010.07.010 9. Chou, S. K., Yang, W. M., Li, J., & Li, Z. W. (2010). Porous media combustion for micro thermophotovoltaic system applications. Applied Energy, 87(9 ), 2862-2867. doi:10.1016/j.apenergy.2009.06.039 10. De Giorgi, M. G., Ficarella, A., Sciolti, A., Pescini, E., Campilongo, S., & Di Lecce, G. (2017). Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators. Energy, 126, 689-706. doi:https://doi.org/l0.1016/j.energy.2017.03.048 11. Fan, A., Li, L., Yang, W., & Yuan, Z. (2019). Comparison of combustion efficiency between micro combustors with single- and double-layered walls: A numerical study. Chemical Engineering and Processing - Process Intensification, 137,39-47. doi:10.1016/j.cep.2019.02.004 12. Fan, A., Wan, J., Liu, Y., Pi, B., Yao, H., & Liu, W. (2014). Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor. Applied Thermal Engineering, 62( 1 ),13-19. doi:10.1016/j.applthermaleng.2013.09.010 13. Femandez-Pello, A. C. (2002). Micropower Generation Using Combustion- Issues And Approaches. Proceedings of the Combustion Institute, 29,883-899. 14. Fu, K., Knobloch, A. J., Martinez, F. C., Walther, D. C., Femandez-Pello, C., Pisano, A. P., . . . 15. Maruta, K. (2001, November 11-16). Design and Experimental Results of Small-Scale Rotary Engines. Paper presented at the 2001 ASME International Mechanical Engineering Congress and Exposition, New York. 16. Gandia, L., Arzamendi, G. and Dieguez, P., 2013. Renewable Hydrogen Technologies.Amsterdam: Elsevier Science, p.218. 17. Gao, J., Kong, C., Zhu, J., Ehn, A., Hurtig, T., Tang, Y., . . . Li, Z. (2019). Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge. Proceedings of the Combustion Institute, 57(4), 5629-5636. doi:https://doi.org/10.1016/j.proci.2018.06.030 18. Ju, Y., & Maruta, K. (2011). Microscale combustion: Technology development and fundamental research. Progress in Energy and Combustion Science, 37(6), 669-715. doi:10.1016/j.pecs.2011.03.001 19. Ju, Y., & Xu, B. (2005). Theoretical and experimental studies on mesoscale flame propagation and extinction. Proceedings of the Combustion Institute, 30(2), 2445-2453. doi:10.1016/j.proci.2004.08.234 20. Kaisare, N. S., & Vlachos, D. G. (2012). A review on microcombustion: Fundamentals, devices and applications. Progress in Energy and Combustion Science, 35(3), 321-359. doi:10.1016/j.pecs.2012.01.001 21. Kriegseis, J., Kurz, A., Duchmann, A., Grundmann, S.,& Tropea, C. (2012). Influence of air flow on the performance of DBD Plasma Actuators. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, doi:10.2514/6.2012-406 22. Kozato, Y., Kikuchi, S., Imao, S., Kato, Y., & Okayama, K. (2016). Flow control of a rectangular jet by DBD plasma actuators. International Journal of Heat and Fluid Flow, 62, 33-43. doi:https://doi.org/l0.1016/j.ijheatfluidflow.2016.09.014 23. Kurdyumov, V. N., Pizza, G., Frouzakis, C. E., & Mantzaras, J. (2009). Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combustion and Flame, 156(11), 2190-2200. doi:10.1016/j.combustflame.2009.08.001 24. Kyritsis, D. C., Coriton, B., Faure, F., Roychoudhury, S., & Gomez, A. (2004). Optimization of a catalytic combustor using electrosprayed liquid hydrocarbons for mesoscale power generation. 25. Combustion and Flame, 739(1-2), 77-89. doi:10.1016/j.combustflame.2004.06.010 26. Kyritsis, D. C., Roychoudhury, S., McEnally, C. S., Pfefferle, L. D., & Gomez, A. (2004). 27. Mesoscale combustion: a first step towards liquid fueled batteries. Experimental Thermal and Fluid Science, 28(1),763-770. doi:10.1016/j.expthermflusci.2003.12.014 28. Law, C. K. (2007). Combustion at a crossroads: Status and prospects. Proceedings of the Combustion Institute, 5/(1), 1-29. doi:10.1016/j.proci.2006.08.124 29. Lee, K. H., & Kwon, O. C. (2007). A numerical study on structure of premixed methane-air microflames for micropower generation. Chemical Engineering Science, 52(14), 3710-3719. doi:10.1016/j.ces.2007.03.038 30. Li, J., Chou, S. K., Li, Z. W., & Yang, W. M. (2009). A potential heat source for the microthermophotovoltaic (TPV) system. Chemical Engineering Science, 64(14), 3282-3289. doi:10.1016/j.ces.2009.04.005 31. Li, J., Chou, S. K., Yang, W. M., & Li, Z. W. (2009). A numerical study on premixed micro ¬ combustion of CH4-air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature. Chemical Engineering Journal, 150(1), 213-222. doi:10.1016/j.cej.2009.02.015 32. Li, J., Huang, J., Chen, X., Zhao, D., Shi, B., Wei, Z., & Wang, N. (2016). Effects of heat recirculation on combustion characteristics of n-heptane in micro combustors. Applied Thermal Engineering, 109,697-708. doi:https://doi.org/10.1016/j.applthermaleng.2016.08.085 33. Li, Y., Chen, G., Hsu, H. and Chao, Y., 2010. Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities. Chemical Engineering Journal, 160(2), pp.715-722. 34. Mane Deshmukh, S. B., Krishnamoorthy, A., & Bhojwani, V. K. (2018). Experimental Research on the Effect of Materials of One Turn Swiss Roll Combustor on Its Thermal Performance as a Heat Generating Device. Materials Today: Proceedings, 5(1, Part 1), 737-744. doi:https://doi.org/l0.1016/j.matpr.2017.11.141 35. Maruta, K. (2011). Micro and mesoscale combustion. Proceedings of the Combustion Institute, 53(1), 125-150. doi:10.1016/j.proci.2010.09.005 36. Mehra, A., Zhang, X., Waitz, I. A., Schmidt, M. A., & Spadaccini, C. M. (2000). A Six-Wafer Combustion System for a Silicon Micro Gas Turbine Engine. Journal of Microelectromechanical Systems, 9(4), 517-526. 37. Miesse, C. M., Masel, R. I., Jensen, C. D., Shannon, M. A., & Short, M. (2004). Submillimeterscale combustion. AIChE Journal, 50(12), 3206-3214. doi:10.1002/aic.10271 38. Mikami, M., Maeda, Y., Matsui, K., Seo, T., & Yuliati, L. (2013). Combustion of gaseous and liquid fuels in meso-scale tubes with wire mesh. Proceedings of the Combustion Institute, 34(2 ), 3387-3394. doi:10.1016/j.proci.2012.05.064 39. Moralev, I., Sherbakova, V., Selivonin, I., Bityurin, V., & Ustinov, M. (2018). Effect of the discharge constriction in DBD plasma actuator on the laminar boundary layer. International Journal of Heat and Mass Transfer, 116, 1326-1340. doi:https://doi.org/l0.1016/j.ijheatmasstransfer.2017.09.121 40. Munir, F. A., & Mikami, M. (2015a). Modeling of Propane-air Combustion in Meso-scale Tubes with Wire Mesh. Paper presented at the 10th Asia Pacific Conference on Combustion (ASPACC 2015), Beijing China. 41. Munir, F. A.,& Mikami, M. (2015b). A numerical study of propane-air combustion in meso-scale tube combustors with concentric rings. Journal of Thermal Science and Technology, 10( 1 ), 1-12.doi:l 0.1299/jtst.2015jtst0008 42. Nakamura, H., Fan, A., Minaev, S., Sereshchenko, E., Fursenko, R., Tsuboi, Y., & Maruta, K. (2012). Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel. Combustion and Flame, 159(4),1631- 1643. doi:10.1016/j.combustflame.2011.11.004 43. Neretti, G., Cristofolini, A., Borghi, C. A., Gurioli, A., & Pertile, R. (2012). Experimental Results in DBD Plasma Actuators for Air Flow Control. IEEE Transactions on Plasma Science, 40(6 ), 1678-1687. doi:10.1109/tps.2012.2191801 44. Norton, D. G., & Ylachos, D. G. (2003). Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures. Chemical Engineering Science, 55(21), 4871-4882. Norton, D. G., & Vlachos, D. G. (2004). A CFD study of propane/air microflame stability. Combustion and Flame, 735(1-2), 97-107. 45. Norton, D. G., Wetzel, E. D., & Vlachos, D. G. (2004). Fabrication of Single-Channel Catalytic Microbumers: Effect of Confinement on the Oxidation of Hydrogen/Air Mixtures. Industrial & Engineering Chemistry Research, 43,4833-4840. 46. Pan, J., Zhang, R., Lu, Q., Zha, Z., & Bani, S. (2017). Experimental study on premixed methaneair catalytic combustion in rectangular micro channel. Applied Thermal Engineering, 117, 1-7. doi:10.1016/j.applthermaleng.2017.02.008 47. Peng, Q., E, J., Zhang, Z., Hu, W., & Zhao, X. (2018). Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Applied Thermal Engineering, 130,541-551. doi:10.1016/j.applthermaleng.2017.11.016 48. Simeni Simeni, M., Tang, Y., Hung, Y.-C., Eckert, Z., Frederickson, K., & Adamovich, I. (2018). Electric field in Ns pulse and AC electric discharges in a hydrogen diffusion flame. Combustion and Flame, 197,254-264. doi:10.1016/j.combustflame.2018.08.004 49. Sitzki, L., Borer, K., Schuster, E., Ronney, P. D., & Wussow, S. (2001). Combustion in Microscale Heat-Recirculating Burners. Paper presented at the The Third Asia-Pacific Conference on Combustion, Seoul Korea. 50. Tang, A., Cai, T., Huang, Q., Deng, J., & Pan, J. (2018). Numerical study on energy conversion performance of micro-thermophotovoltaic system adopting a heat recirculation micro-combustor. Fuel Processing Technology, 180, 23-31. doi:10.1016/j.fuproc.2018.07.034 51. Tang, Y., Zhuo, J., Cui, W., Li, S., & Yao, Q. (2019). Enhancing ignition and inhibiting extinction of methane diffusion flame by in situ fuel processing using dielectric-barrier-discharge plasma. Fuel Processing Technology, 194,106128. doi:https://doi.org/10.1016/j.fiiproc.2019.106128 52. Turns, S. R. (2000). An Introduction To Combustion Concepts and Applications (Vol. Second Edition). Singapore: Me GrawHill. 53. V.Shirsat, & Gupta, A. K. (2011). A review of progress in heat recirculating meso-scale combustors. Applied Energy, 88(12), 4294-4309. doi:10.1016/j.apenergy.2011.07.021 54. Veeraragavan, A., & Cadou, C. P. (2011). Flame speed predictions in planar micro/mesoscale combustors with conjugate heat transfer. Combustion and Flame, 755(11), 2178-2187. doi:10.1016/j.combustflame.2011.04.006 55. Vican, J., Gajdeczko, F., Dryer, F. L., Milius, D. L., Aksay, A., & Yetter, R. A. (2002). Development of a microreactor as a thermal source for microelectromechanical systems power generation Proceedings of the Combustion Institute, 29,909-916. 56. Yijayan, V., & Gupta, A. K. (2011). Thermal performance of a meso-scale liquid-fuel combustor. Applied Energy, 88(7 ),2335-2343. doi:10.1016/j.apenergy.2011.01.012 57. Vullers, R. J. M., van Schaijk, R., Dorns, I., Van Hoof, C., & Mertens, R. (2009). Micropower energy harvesting. Solid-State Electronics, 53(7), 684-693. doi:10.1016/j.sse.2008.12.011 58. Wan, J., Fan, A., Maruta, K., Yao, H., & Liu, W. (2012). Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body. International Journal of Hydrogen Energy, 37(24), 19190-19197. doi:10.1016/j.ijhydene.2012.09.154 59. Wang, H., Iovenitti, P., Harvey, E., Masood, S., & Deam, R. (2001). Mixing of liquids using obstacles in microchannels. Paper presented at the BioMEMS and Smart Nanostructures. 60. Wang, S., Yuan, Z., & Fan, A. (2019). Experimental investigation on non-premixed CH4/air combustion in a novel miniature Swiss-roll combustor. Chemical Engineering and Processing - Process Intensification, 139,44-50. doi:https://doi.org/10.1016/j.cep.2019.03.019 61. Wang, Y., Yang, Z. Z. W., Zhou, J., Liu, J., Wang, Z., & Chen, K. (2011). Instability of flame in micro-combustor under different external thermal environment. Experimental Thermal and Fluid Science, 35(1),1451-1457. doi:10.1016/j.expthermflusci.2011.06.003 62. Weinberg, F. J., Rowe, D. M., Min, G., & Ronney, P. D. (2002). On Thermoelectric Power Conversion From Heat Recirculating Combustion Systems. Proceedings of the Combustion Institute, 2002, 941-947. 63. Yadav, S., Yamasani, P., & Kumar, S. (2015). Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Conversion and Management, 99, 1-7. doi:10.1016/j.enconman.2015.04.019 64. Yang, X., He, Z., Zhao, L., Dong, S. and Tan, H., 2019. Effect of Channel Diameter on the Combustion and Thermal Behavior of a Hydrogen/Air Premixed Flame in a Swirl MicroCombustor. Energies, 12(20), p.3821. 65. Yang, W. M., Chou, S. K., Shu, C., Xue, H., Li, Z. W„Li, D. T., & Pan, J. F. (2003). Microscale combustion research for application to micro thermophotovoltaic systems. Energy Conversion and Management, 44(16), 2625-2634. doi:10.1016/s0196-8904(03)00024-4 66. Yuliati, L., Seo, T., & Mikami, M. (2012). Liquid-fuel combustion in a narrow tube using an electrospray technique. Combustion and Flame, 159( 1 ), 462-464. doi:https://doi.org/10.1016/j.combustflame.2011.06.010 67. Zainudin, M., 2020. Chemical reaction and Flow Mechanism. Investigation Of Factors Affecting Flame Stabilization In Meso-Scale Combustor For Micro Power Generation, pp.62 - 66. 68. Zhang, Z., Wu, K., Yuen, R., Yao, W., & Wang, J. (2020). Numerical investigation on the performance of bluff body augmented micro cavity-combustor. International Journal of Hydrogen Energy, 45(f ), 4932-4945. doi:https://doi.org/10.1016/j.ijhydene.2019.12.004 69. Zuo, W., E, J., & Lin, R. (2018). Numerical investigations on an improved counterflow double ¬ channel micro combustor fueled with hydrogen for enhancing thermal performance. Energy Conversion and Management, 159,163-174. doi:https://doi.org/10.1016/j.enconman.2018.01.017 70. Zuo, W., E, J., Peng, Q., Zhao, X., & Zhang, Z. (2017). Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system. Energy, 122, 408-419. doi:https://doi.org/10.1016/j.energy.2017.01.079