Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels

XW42 is a cold work tool steels which is suitable for mould and die application. It has been proven to have an impair value of hardness and toughness which need to be improved. This research provides finding on Ml and M3 which provide an increase in its bulk hardness from 51.5HRC to 52HRC (Ml) and 5...

Full description

Saved in:
Bibliographic Details
Main Author: Abdul Rahim, Mohd Aidil Shah
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/25534/1/Characterization%20and%20Parametric%20Evaluation%20of%20Wire%20Electrical%20Discharge%20Machining%20of%20Cold%20Work%20Tool%20Steels.pdf
http://eprints.utem.edu.my/id/eprint/25534/2/Characterization%20and%20Parametric%20Evaluation%20of%20Wire%20Electrical%20Discharge%20Machining%20of%20Cold%20Work%20Tool%20Steels.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utem-ep.25534
record_format uketd_dc
institution Universiti Teknikal Malaysia Melaka
collection UTeM Repository
language English
English
advisor Minhat, Mohamad

topic T Technology (General)
TJ Mechanical engineering and machinery
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Abdul Rahim, Mohd Aidil Shah
Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels
description XW42 is a cold work tool steels which is suitable for mould and die application. It has been proven to have an impair value of hardness and toughness which need to be improved. This research provides finding on Ml and M3 which provide an increase in its bulk hardness from 51.5HRC to 52HRC (Ml) and 52.6HRC (M3) and its impact toughness from 6.84J to 5.78J (Ml) and 8J (M3). Precipitation of hard carbides such as Cr23C6, Cr7C3, CrC and V2C are the cause for high hardness and segregation of eutectic carbide network cause for high toughness. M2 with lower bulk hardness at 49.8HRC and lower toughness at 5.03J due to low carbon content. Micro-hardness value for XW42, Ml, M2 and M3 were 614HV, 613.7HV, 613.4HV and 6171-1V. M3 keen to have the smallest grain size at 63.4um followed with Ml (644m), XW42 (65.3um) and M2 (66.7um). The combined effects of the machine factors on three machine responses were investigated by employing two levels of full factorial design (FFD) and analysis of variance (ANOVA). The results showed that material removal rate (MRR) was strongly influenced by the interaction of Ton/V and V/WT while surface roughness (SR) was dominantly controlled by Ton, and white layer thickness (WLT) was strongly controlled by V. Machinability through wire electrical discharge machining (WEDM) revealed that M3 could produce the lowest WLT at 144.32um at Ton: 2gs, V: IOV, WT: 120N meanwhile the highest MRR resulted with the lowest at SR 1.92gm are produced at Ton: 2gs, V: 6V; WT: 120N. An average error values of 8.67%, 0.7% and 8.2% between measured and predicted values of MRR, SR and WLT provides guidance for high skill machinery in completing quality end product. M3, with and machinability, it is keen to undergo the process of cutting, within the thickness up to 12mm.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Abdul Rahim, Mohd Aidil Shah
author_facet Abdul Rahim, Mohd Aidil Shah
author_sort Abdul Rahim, Mohd Aidil Shah
title Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels
title_short Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels
title_full Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels
title_fullStr Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels
title_full_unstemmed Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels
title_sort characterization and parametric evaluation of wire electrical discharge machining of cold work tool steels
granting_institution Universiti Teknikal Malaysia Melaka
granting_department Faculty of Manufacturing Engineering
publishDate 2019
url http://eprints.utem.edu.my/id/eprint/25534/1/Characterization%20and%20Parametric%20Evaluation%20of%20Wire%20Electrical%20Discharge%20Machining%20of%20Cold%20Work%20Tool%20Steels.pdf
http://eprints.utem.edu.my/id/eprint/25534/2/Characterization%20and%20Parametric%20Evaluation%20of%20Wire%20Electrical%20Discharge%20Machining%20of%20Cold%20Work%20Tool%20Steels.pdf
_version_ 1747834136383455232
spelling my-utem-ep.255342022-01-06T11:18:56Z Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels 2019 Abdul Rahim, Mohd Aidil Shah T Technology (General) TJ Mechanical engineering and machinery XW42 is a cold work tool steels which is suitable for mould and die application. It has been proven to have an impair value of hardness and toughness which need to be improved. This research provides finding on Ml and M3 which provide an increase in its bulk hardness from 51.5HRC to 52HRC (Ml) and 52.6HRC (M3) and its impact toughness from 6.84J to 5.78J (Ml) and 8J (M3). Precipitation of hard carbides such as Cr23C6, Cr7C3, CrC and V2C are the cause for high hardness and segregation of eutectic carbide network cause for high toughness. M2 with lower bulk hardness at 49.8HRC and lower toughness at 5.03J due to low carbon content. Micro-hardness value for XW42, Ml, M2 and M3 were 614HV, 613.7HV, 613.4HV and 6171-1V. M3 keen to have the smallest grain size at 63.4um followed with Ml (644m), XW42 (65.3um) and M2 (66.7um). The combined effects of the machine factors on three machine responses were investigated by employing two levels of full factorial design (FFD) and analysis of variance (ANOVA). The results showed that material removal rate (MRR) was strongly influenced by the interaction of Ton/V and V/WT while surface roughness (SR) was dominantly controlled by Ton, and white layer thickness (WLT) was strongly controlled by V. Machinability through wire electrical discharge machining (WEDM) revealed that M3 could produce the lowest WLT at 144.32um at Ton: 2gs, V: IOV, WT: 120N meanwhile the highest MRR resulted with the lowest at SR 1.92gm are produced at Ton: 2gs, V: 6V; WT: 120N. An average error values of 8.67%, 0.7% and 8.2% between measured and predicted values of MRR, SR and WLT provides guidance for high skill machinery in completing quality end product. M3, with and machinability, it is keen to undergo the process of cutting, within the thickness up to 12mm. 2019 Thesis http://eprints.utem.edu.my/id/eprint/25534/ http://eprints.utem.edu.my/id/eprint/25534/1/Characterization%20and%20Parametric%20Evaluation%20of%20Wire%20Electrical%20Discharge%20Machining%20of%20Cold%20Work%20Tool%20Steels.pdf text en public http://eprints.utem.edu.my/id/eprint/25534/2/Characterization%20and%20Parametric%20Evaluation%20of%20Wire%20Electrical%20Discharge%20Machining%20of%20Cold%20Work%20Tool%20Steels.pdf text en validuser https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=119781 phd doctoral Universiti Teknikal Malaysia Melaka Faculty of Manufacturing Engineering Minhat, Mohamad 1. Abdul Rahim, M. A. S. B., Minhat, M. B., Hussein, N. I. S. B., and Salleh, M. S. B„2018. A comprehensive review on cold work of AISI D2 tool steel. Metallurgical Research and Technology, 115(1), pp. 1-12. 2. Agarwal, M., 2013. Powder-Mixed Electro-Discharge Diamond Surface Grinding Process: Modelling, Comparative Analysis and Multi-Output Optimisation Using Weighted Principal Components Analysis. 59, pp. 735-747. 3. Akincio lu, S., Mendi, F., Qi9ek, A., and Akincio lu, G., 2013. ANN-based prediction of surface and hole quality in drilling of AISI D2 cold work tool steel. International Journal of Advanced Manufacturing Technology, 68(1-4), pp. 197-207. 4. Al-khazraji, A., Ali, S., and Mahmood, S., 2016. Engineering Science and Technology, An International Journal The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. International Journal Engineering Science and Technology, 19(3), pp. 1400- 1415. 5. Ali, M. Y., Banu, A., Salehan, M., Adesta, E. Y. T., Hazza, M., and Shaffiq, M., 2018. Dimensional Accuracy in Dry Micro Wire Electrical Discharge Machining. Journal of Mechanical Engineering and Sciences, 12(1), pp. 3321-3329. 6. Alias, A., Abdullah, B., and Abbas, N. M., 2012. WEDM: Influence of machine feed rate in machining Titanium Ti-6A1-4V using brass wire and constant current (4A). Procedia Engineering, pp. 1812-1817. 7. Antar, M. T., Soo, S. L., Aspinwall, D. K., Jones, D., and Perez, R., 2011. Productivity and workpiece surface integrity when WEDM aerospace alloys using coated wires. Procedia Engineering, 19, pp. 3-8. 8. Atzeni, E., Bassoli, E., Gatto, A., Iuliano, L., Minetola, P., and Salmi, A., 2015. Surface and Sub Surface Evaluation in Coated-Wire Electrical Discharge Machining (WEDM) of INCONEL® Alloy 718. Procedia CIRP, 33, pp. 388-393. 9. Azam, M., Jahanzaib, M., Abbasi, J. A., Abbas, M., Wasim, A., and Hussain, S., 2016. Parametric analysis of recast layer formation in wire-cut EDM of HSLA steel. International Journal of Advanced Manufacturing Technology, pp. 1-10. 10. Balan, K. P., Venugopal Reddy, A., and Sarnia, D. S., 1999. Effect of Single and Double Austenitization Treatments on the Microstructure and Mechanical Properties of 16Cr-2Ni Steel. Journal of Materials Engineering and Performance, 8(June), pp. 385-393. 11. Blaha, J., Krempaszky, C., and Werner, E. A., 2010. Carbide Distribution Effects in Cold Work Tool Steels, pp. 289-298. 12. Bombac, D., Fazarinc, M., Podder, A. S., and Kugler, G., 2013. Study of carbide evolution during thermo-mechanical processing of AISI D2 tool steel. Journal of Materials Engineering and Performance, 22(3), pp. 742-747. 13. Cabanes, I., Portillo, E., Marcos, M., and Sanchez, J. A., 2008. On-line prevention of wire breakage in wire electro-discharge machining. Robotics and Computer-Integrated Manufacturing, 24(2), pp. 287-298. 14. Chandrasekaran, M., George, J., Arunachalam, R. M., and Teyi, N., 2017. Multi-Objective Parametric Optimization for Non-Conventional Machining of Inconel 825- for an Industrial Application. Journal of Scientific and Industrial Research, 76(May), pp. 319-324. 15. Chang, E., Chang, C. Y., and Liu, C. D., 1994. The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steel. Metallurgical and Materials Transactions, 25(3), pp. 545-555. 16. Conci, M. D., Bozzi, A. C., and Franco, A. R., 2014. Effect of plasma nitriding potential on tribological behaviour of AISI D2 cold-worked tool steel. Wear, 317(1-2), pp. 188-193. 17. Conde, A., Arriandiaga, A., Sanchez, J. A., Portillo, E., Plaza, S., and Cabanes, I., 2018. High-accuracy wire electrical discharge machining using artificial neural networks and optimization techniques. Robotics and Computer-Integrated Manufacturing, 49(May), pp. 24-38. 18. Dekeyser, W., Snoeys, R., and Jennes, M., 1985. A thermal model to investigate the wire rupture phenomenon for improving performance in EDM wire cutting. Journal of Manufacturing Systems, 4(2), pp. 179-190. 19. Di, S., Chu, X., Wei, D., Wang, Z., Chi, G., and Liu, Y., 2009. Analysis of kerf width in micro-WEDM. International Journal of Machine Tools and Manufacture, 49(10), pp. 788-792. 20. Dongre, G., Zaware, S., Dabade, U., and Joshi, S. S., 2015. Multi-objective optimization for silicon wafer slicing using wire-EDM process. Materials Science in Semiconductor Processing, 39, pp. 793-806. 21. Durairaj, M., Sudharsun, D., and Swamynathan, N., 2013. Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Engineering, pp. 868-877. 22. Durand-Charre, M., 2004. The basic phase diagrams. The Microstructure of Steels and Cast Irons, pp. 51-73. 23. Flenner, P., 2007. Carbon Steel Handbook. Carbon, 3(3), pp. 172-176. 24. Gaitonde, V. N., Kamik, S. R., Figueira, L., and Paulo Davim, J., 2009b. Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), pp. 754-763. 25. Gaitonde, V. N., Kamik, S. R., Figueira, L., and Paulo Davim, J., 2009a. Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), pp. 754-763. 26. Gautier, G., Priarone, P. C., Rizzuti, S., Settineri, L., and Tebaldo, V., 2015. A Contribution on the Modelling of Wire Electrical Discharge Machining of a y-TiAl Alloy. Procedia CIRP 31, pp. 203-208. 27. Ghodsiyeh, D., Golshan, A., and Izman, S., 2013. Multi-objective process optimization of wire electrical discharge machining based on response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(2), pp. 301-313. 28. Giridharan, A. S. S. B., 2017. A progress review in wire electrical discharge machining process. 14(2), pp. 4097-4124. 29. Goswami, A. and Kumar, J., 2017. Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM. International Journal Engineering Science and Technology, 20(1), pp. 175-186. 30. Goswami, A., and Kumar, J., 2014. Optimization in wire-cut EDM of Nimonic-80A using Taguchi’s approach and utility concept. International Journal Engineering Science and Technology, 17(4), pp. 236-246. 31. Guo, Z. N., Yue, T. M., Lee, T. C., and Lau, W. S., 2003. Computer simulation and characteristic analysis of electrode fluctuation in wire electric discharge machining. Journal of Materials Processing Technology, 142(2), pp. 576-581. 32. Hamidzadeh, M. A., Meratian, M., and Mohammadi Zahrani, M., 2012. A study on the microstructure and mechanical properties of AISI D2 tool steel modified by niobium. Materials Science and Engineering, 556, pp. 758-766. 33. Hamidzadeh, M. A., Meratian, M., and Saatchi, A., 2013. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel. Materials Science and Engineering, 571, pp. 193-198. 34. Han, F., Cheng, G., Feng, Z., and Isago, S., 2008. Thermo-mechanical analysis and optimal tension control of micro wire electrode. International Journal of Machine Tools and Manufacture, 48(7-8), pp. 922-931. 35. Han, F., Zhang, J., and Soichiro, I., 2007. Comer error simulation of rough cutting in wire EDM. Precision Engineering, 31, pp. 331-336. 36. Hasalyk, A., and £ayda§, U., 2004. Experimental study of wire electrical discharge machining of AISI D5 tool steel. Journal of Materials Processing Technology, 148(3), pp. 362-367. 37. Hecht, M. D., Webler, B. A., and Picard, Y. N., 2018. Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel. Metallurgical and Materials Transactions, 49(6), pp. 2161-2172. 38. Hemalatha, K., Venkatachalapathy, V. S. K., and Alagumurthi, N., 2014. Multi-Objective Optimization in Wire-Cut Electric Discharge Machining of A1 6O63/AI2O3 Metal Matrix Composite through Response Surface Methodology. Applied Mechanics and Materials, 592-594, pp. 534-539. 39. Hewidy, M. S., El-Taweel, T. A., and El-Safty, M. F., 2005. Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. Journal of Materials Processing Technology, 169(2), pp. 328-336. 40. Ho, K.., Newman, S., Rahimifard, S., and Allen, R., 2004. State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12-13), pp. 1247-1259. 41. Hu, X., Li, L., Wu, X., and Zhang, M., 2006. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. International Journal of Fatigue, 28(3), pp. 175-182. 42. Huallpa, E. A., Sanchez, J. C., Padovese, L. R., and Goldenstein, H., 2013a. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise. Journal of Alloys and Compounds, 577, pp. 726-730. 43. Huang, C. A., Hsu, F. Y., and Yao, S. J., 2004. Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM). Materials Science and Engineering, 371(1-2), pp. 119-126. 44. Huang, C. A., Tu, G. C., Yao, H. T., and Kuo, H. H., 2004. Characteristics of the rough-cut surface of quenched and tempered martensitic stainless steel using wire electrical discharge machining. Metallurgical and Materials Transactions, 35(4), pp. 1351-1357. 45. Iqbal, A., 2012. Modeling Milling Process Using Artificial Neural Network. Advanced Materials Research, 628, pp. 128-134. 46. Jai Hindus, S., Hema Kumar, S., Xavier Arockiyaraj, S., Venkatesh Kannan, M., and Kuppan, P., 2014. Experimental investigation on laser assisted surface tempering of AISID2 tool steel. Procedia Engineering, 97, pp. 1489-1495. 47. Jung, I., Lublich, V., and Wieland, H. J., 200. Tool Failures - Causes and Prevention. 6th International Tooling Conference, 6, pp. 1343-1362. 48. Kahrobaee, S., and Kashefi, M., 2015. Microstructural Characterization of Quenched AISI D2 Tool Steel Using Magnetic/Electromagnetic. IEEE Transactions on Magnetics, 51(9), pp. 1-8. 49. Kalandyk, B., 2018. Chemical composition of the investigated cast steel. 63, pp. 113-117. 50. Kanlayasiri, K., and Boonmung, S., 2007a. Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. Journal of Materials Processing Technology, 192-193, pp. 459-464. 51. Kaplan, Y., Motorcu, A. R., Nalbant, M., and Okay, §., 2015. The effects of process parameters on acceleration amplitude in the drilling of cold work tool steels. The International Journal of Advanced Manufacturing Technology, 80(5-8), pp. 1387 1401. 52. Karimi Zarchi, M., Shariat, M. H., Dehghan, S. A., and Solhjoo, S., 2013. Characterization of nitrocarburized surface layer on AISI 1020 steel by electrolytic plasma processing in an urea electrolyte. Journal of Materials Research and Technology, 2(3), pp. 213-220. 53. Karthikeyan, T., Dash, M. K., Ravikirana, Mythili, R., Panneer Selvi, S., Moitra, A., and Saroja, S., 2017. Effect of prior-austenite grain refinement on microstructure, mechanical properties and thermal embrittlement of 9Cr-lMo-0.1C steel. Journal of Nuclear Materials. Elsevier B.V, 494, pp. 260-277. 54. Karthikeyan, T., Thomas Paul, V., Saroja, S., Moitra, A., Sasikala, G., and Vijayalakshmi, M„2011. Grain refinement to improve impact toughness in 9Cr-lMo steel through a double austenitization treatment. Journal of Nuclear Materials, 419(1-3), pp. 256-262. 55. Kassavetis, G. A., Zentner, P. G., and Geiduschek, E. P., 1986. Transcription at bacteriophage T4 variant late promoters. An application of a newly devised promotermapping method involving RNA chain retraction. Journal of Biological Chemistry, 261(30), pp. 14256-14265. 56. Kham Sanij, M. H., Ghasemi Banadkouki, S. S., Mashreghi, A. R., and Moshrefifar, M„ 2012. The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel. Materials and Design, 42, pp. 339-346. 57. Kheirandish, S., and Noorian, A., 2008. Effect of Niobium on Microstructure of Cast AISI H13 Hot Work Tool Steel. Journal of Iron and Steel Research International, 15(4), pp. 61-66. 58. Kheirandish, S., Saghafian, H., Hedjazi, J., and Momeni, M., 2010. Effect of heat treatment on microstructure of modified cast AISI D3 cold work tool steel. Journal of Iron and Steel Research International, 17(9), pp. 40-52. 59. Kim, H., Kang, J. Y., Son, D., Lee, T. H., and Cho, K. M., 2015. Evolution of carbides in cold-work tool steels. Materials Characterization, 107, pp. 376-385. 60. Kinoshita, N., Fukui, M., and Kimura, Y., 1984. Study on Wire-EDM: Inprocess Measurement of Mechanical Behaviour of Electrode Wire. CIRP Annals, 33(1), pp. 89-92. 61. Kinoshita, N., Fukui, M„and Fujii, T., 1987. Study on Wire-EDM: Accuracy in Taper-Cut. 62. CIRP Annals - Manufacturing Technology, 36(1), pp. 119-122. 63. Kinoshita, N„Fukui, M., and Gamo, G., 1982. Control of Wire-EDM Preventing Electrode from Breaking. CIRP Annals - Manufacturing Technology, 31(1), pp. 111-114. Klocke, F., Hensgen, L., Klink, A., Ehle, L., and Schwedt, A., 2016. Structure and Composition of the White Layer in the Wire-EDM Process. Procedia CIRP, 42(Isem xviii), pp. 673-678. 64. Klocke, F., Welling, D., Klink, A., Veselovac, D., Nothe, T., and Perez, R., 2014. Evaluation of Advanced Wire-EDM Capabilities for the Manufacture of Fir Tree Slots in Inconel 718. Procedia CIRP, 14, pp. 430-435. 65. Ko, D. C., Kim, S. G., and Kim, B. M., 2015. Influence of microstructure on galling resistance of cold-work tool steels with different chemical compositions when sliding against ultra-high-strength steel sheets under dry condition. 338-339, pp. 362-371. 66. Kubota, K., Ohba, T., and Morito, S., 2011. Frictional properties of new developed cold work tool steel for high tensile strength steel forming die. Wear, 271(11-12), pp. 2884-2889. 67. Kumar, A., Kumar, V., and Kumar, J., 2014. Semi-empirical model on MRR and overcut in WEDM process of pure titanium using multi-objective desirability approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2), pp. 689-721. 68. Kunieda, M., and Furudate, C., 2001. High Precision Finish Cutting by Dry WEDM. CIRP Annals - Manufacturing Technology, 50(1), pp. 121-124. 69. Kuo, C., Kao, H., and Wang, H., 2017. Novel design and characterisation of surface modification in wire electrical discharge machining using assisting electrodes. Journal of Materials Processing Technology, 244, pp. 136-149. 70. Kuriakose, S., and Shunmugam, M. S., 2004. Characteristics of wire-electro discharge machined Ti6A14V surface. Materials Letters, 58(17-18), pp. 2231-2237. 71. Lautre, N. K., and Manna, A., 2006. A study on fault diagnosis and maintenance of CNCWEDM based on binary relational analysis and expert system. The International Journal of Advanced Manufacturing Technology, 29(5), pp. 490-498. 72. Levy, G. N., 1993. Environmentally Friendly and High-Capacity Dielectric Regeneration for Wire EDM. CIRP Annals - Manufacturing Technology, 42(1), pp. 227-230. 73. Li, L., Guo, Y. B., Wei, X. T., and Li, W., 2013. Surface integrity characteristics in wireEDM of inconel 718 at different discharge energy. Procedia CIRP, 6, pp. 220-225. 74. Li, Q., Xia, T., Lan, Y., Zhao, W., Fan, L., and Li, P., 2013. Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20%Si alloy. Journal of Alloys and Compounds, 562, pp. 25-32. 75. Liang, J. F., and Liao, Y. S., 2014. Methods to measure wire deflection in wire EDM machining. International Journal of Automation Technology, 8(3), pp. 461-467. 76. Liu, J. F., Guo, Y. B., Butler, T. M., and Weaver, M. L., 2016. Crystallography, compositions, and properties of white layer by wire electrical discharge machining of nitinol shape memory alloy. JMADE, 109, pp. 1-9. 77. Luo, Y. F., 1999. Rupture failure and mechanical strength of the electrode wire used in wire EDM. Journal of Materials Processing Technology, 94(2-3), pp. 208-215. 78. Luo, Y. F., 1995. An energy-distribution strategy in fast-cutting wire EDM. Journal of Materials Processing Technology, 55(3-4), pp. 380-390. 79. Masscia, R., Ramos Neto, F. F., Neto, T. F. B., and Franco, S. D., 2013. Effects of pressure and counterbody hardness in the abrasive wear behavior of tool steels. Wear, 303(1-2), pp.412-418. 80. Maalekian, M., 2007. The Effects of Alloying Elements on Steels. (October), pp. 1-36. 81. Mahapatra, S. S., and Patnaik, A., 2007. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. International Journal of Advanced Manufacturing Technology, 34(9-10), pp. 911-925. 82. Maher, I., Liew, H. L., Sarhan, A. A. D., and Hamdi, M., 2015. Improve wire EDM performance at different machining parameters - ANFIS modeling. IFAC-PapersOnLine, 48( 1 ), pp. 105-110. 83. Maher, I., and Sarhan, A. A. D., 2016. Proposing a new performance index to identify the effect of spark energy and pulse frequency simultaneously to achieve high machining performance in WEDM. International Journal of Advanced Manufacturing Technology, 91( 1-4), pp. 1-11. 84. Maher, I., Sarhan, A. A. D., Barzani, M. M., and Hamdi, M., 2015. Increasing the productivity of the wire-cut electrical discharge machine associated with sustainable production. Journal of Cleaner Production, 108, pp. 247-255. 85. Maher, I., Sarhan, A. A. D., Marashi, H., Barzani, M. M., and Hamdi, M., 2015. White layer thickness prediction in WEDM-ANFIS modelling. Malaysian International Tribology Conference 2015, 2967(July), pp. 240-241. 86. Manjaiah, M., Narendranath, S., and Basavarajappa, S., 2016. Wire Electro Discharge Machining Performance of TiNiCu Shape Memory Alloy. Silicon,8(3), pp. 467-475. 87. Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V. N., 2016. Influence of process parameters on material removal rate and surface roughness in WED-machining of Ti50Ni40Cul 0 shape memory alloy. International Journal of Machining and Machinability of Materials, 18(1/2), pp. 36-53. 88. Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V. N., 2015. Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50-xCux shape memory alloy. Precision Engineering, 41, pp. 68-77. 89. Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V. N., 2014. Wire electric discharge machining characteristics of titanium nickel shape memory alloy. Transactions of Nonferrous Metals Society of China (English Edition), 24(10), pp. 3201-3209. 90. Menzies, I., and Koshy, P., 2008. Assessment of abrasion-assisted material removal in wire EDM. CIRP Annals - Manufacturing Technology, 57(1), pp. 195-198. 91. Mhamdi, M. B., Salem, S. B., Boujelbene, M., and Bayraktar, E., 2013. Experimental study of the chip morphology in turning hardened AISI D2 steel. Journal of Mechanical Science and Technology, 27(11), pp. 3451-3461. 92. Miao, K., He, Y., Zhu, N., Wang, J., Lu, X., and Li, L., 2015. Coarsening of carbides during different heat treatment conditions. Journal of Alloys and Compounds, 622, pp. 513-523. 93. Miller, S. F., Shih, A. J., and Qu, J., 2004. Investigation of the spark cycle on material removal rate in wire electrical discharge machining of advanced materials. International Journal of Machine Tools and Manufacture, 44(4), pp. 391-400. 94. Mohamad, N., Muchtar, A., Ghazali, M. J., Mohd, D. H. J., and Azhari, C. H., 2009. Epoxidized Natural Rubber-Alumina Nanoparticle Composites: Optimization of Mixer Parameters via Response Surface Methodology. Journal of Applied Polymer Science, 115(1), pp. 183-189. 95. Mohammed, M. N., Omar, M. Z., Syarif, J., Sajuri, Z., Salleh, M. S., and Alhawari, K. S., 2013. Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel. The Scientific World Journal, 2013, pp. 1-7. 96. Mohri, N., Yatnada, H., Furutani, K., Narikiyo, T., and Magara, T., 1998. System’Identification of Wire Electrical Discharge Machining. CIRP Annals –Manufacturing Technology, 47(1), pp. 173-176. 97. Molak, R. M., Kartal, M. E., Pakiela, Z., and Kurzydlowski, K. J., 2016. The effect of specimen size and surface conditions on the local mechanical properties of 14MoV6 ferriticpearlitic steel. Materials Science and Engineering, 651, pp. 810-821. 98. Mukheijee, R., Chakraborty, S., and Samanta, S., 2012. Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Applied Soft Computing, pp. 2506-2516. 99. Nain, S. S., Garg, D., and Kumar, S., 2016. Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy Udimet-L605. Engineering Science and Technology, an International Journal, 20(1), pp. 247-264. 100. Najm, V. N., 2018. Experimental Investigation of Wire EDM Process Parameters on Heat Affected Zone. Engineering and Technology Journal Technology Journal, 36(1), pp. 46-54. 101. Nanesa, H. G., Boulgakoff, J., and Jahazi, M., 2016. Influence of prior cold deformation on microstructure evolution of AISI D2 tool steel after hardening heat treatment. Journal of Manufacturing Processes, 22, pp. 115-119. 102. Nayak, D., Sahu, S. N., and Mula, S., 2016. Metallurgical Approach Towards Explaining Optimized EDM Process Parameters for Better Surface Integrity of AISI D2 Tool Steel. Transactions of the Indian Institute of Metals, 70(5), pp. 1-9. 103. Nayak, M., Sehgal, R., and Sharma, R. K., 2015. Mechanical Characterization and Machinability Behavior of Annealed AISI D6 Cold Working Steel. Indian Journal of Materials Science, 2015, pp. 1-12. 104. Nourbakhsh, F., Rajurkar, K. P., Malshe, A. P., and Cao, J., 2013. Wire electro-discharge machining of titanium alloy. Procedia CIRP, 5(2013), pp. 13-18. 105. Novak, P., Vojtech, D., and Serak, J., 2005. Pulsed-plasma nitriding of a niobium-alloyed PM tool steel. Materials Science and Engineering, 393(1-2), pp. 286-293. 106. Okada, A., Uno, Y., Onoda, S., and Habib, S., 2009. Computational fluid dynamics analysis of working fluid flow and debris movement in wire EDMed kerf. CIRP Annals Manufacturing Technology, 58(1), pp. 209-212. 107. Patel, H. C., Patel, D. M., and Prajapati, R., 2012. Parametric Analysis and Mathematical Modelling of MRR and Surface roughness For H-l 1 Material On Wire Cut EDM by D.O.E Approach. International Journal of Engineering Research and Applications,2(4), pp. 1919-1924. 108. Poros, D., and Zaborski, S., 2009. Semi-empirical model of efficiency of wire electrical discharge machining of hard-to-machine materials. Journal of Materials Processing Technology, 209(3), pp. 1247-1253. 109. Prakash, J. U., Moorthy, T. V., and Peter, J. M., 2013. Experimental Investigations on Machinability of Aluminium Alloy (A413)/Flyash/B4C Hybrid Composites Using Wire EDM. Procedia Engineering, 64, pp. 1344-1353. 110. Prasad, D. S., Shoba, C., Varma, K. R., and Khurshid, A., 2015. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy. Journal of Alloys and Compounds, 646(15), pp. 257-263. 111. Prohaszka, J., Mamalis, A. . and Vaxevanidis, N., 1997. The effect of electrode material on machinability in wire electro-discharge machining. Journal of Materials Processing Technology, 69(1-3), pp. 233-237. 112. Puri, A. B., and Bhattacharyya, B., 2004. Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology. The International Journal of Advanced Manufacturing Technology, 25(3-4), pp. 301-307. 113. Qu, J., Riester, L., Shih, A. J., Scattergood, R. O., Lara-curzio, E., and Watkins, T. R., 2003. Nanoindentation characterization of surface layers of electrical discharge machined WC-Co. Materials Science and Engineering, 344(12), pp. 125-131. 114. Qu, Y., Xing, J., Zhi, X., Peng, J., and Fu, H., 2008. Effect of cerium on as-cast microstructure of a hypereutectic high chromium cast Iron. Materials Letters, 62(17), pp. 3024-3027. 115. Quazi, M. M., Fazal, M. A., Haseeb, A. S. M. A., Yusof, F., Masjuki, H. H., and Arslan, A., 2016. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review. Journal of Rare Earths, 34(6), pp. 549-564. 116. Rababa, K. S., and Awad, A., 2012. The Effect of Austenite Temperature on the Microstructure, Mechanical Behavior, Hardness, and Impact Toughness of AISI D2 Tool Steel. International Journal of Engineering Research and Applications, 2(3), pp. 2890- 2896. 117. Radhakrishnan, P., Vijayaraghavan, L., and Ramesh Babu, N., 2017. Assessment of material removal capability with vibration-assisted wire electrical discharge machining. Journal of Manufacturing Processes, 26, pp. 323-329. 118. Rahim, M. A., Minhat, M., Hussein, N. I. S., and Rahman, M. N., 2018. Performance Evaluation and Microstructural Characteristics Of Improved Tool Steel Alloy XW42 By WEDM. Journal of Physics Conference Series, 1082(1), pp. 1-6. 119. Rajasekhar, A., and Reddy, G. M., 2010. The effect of single and double austenitization temperatures on the microstructure, mechanical properties, and pitting corrosion of AISI 431 electron beam welds. Journal of Materials Design and Applications, 224(1), pp. 9-18. 120. Rajurkar, I. P., Wang, W. M., and Rajurkar, K. P., 1993. Thermal Modeling and On-Line Monitoring of Wire-EDM. Journal of Materials Processing Technology, 38, pp. 417— 430. 121. Rajurkar, K. P., Wang, W. M., and Lindsay, R. P„1991. On-Line Monitor and Control for Wire Breakage in WEDM. CIRP Annals - Manufacturing Technology, 40(1), pp. 219-222. 122. Rajyalakshmi, G., and Venkata Ramaiah, P., 2013. Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. The International Journal of Advanced Manufacturing Technology, 69(5-8), pp. 1249- 1262. 123. Ramakrishnan, R., and Karunamoorthy, L., 2008. Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. Journal of Materials Processing Technology, 207(1-3), pp. 343-349. 124. Saedon, J. B., Jaafar, N., Yahaya, M. A., Mohamad Nor, N. H., and Husain, H., 2014. A study on kerf and material removal rate in wire electricaldischarge machining of Ti-6A1-4V: multi-objectives optimization. International Conference on Technology, Informatics, Management, Engineering and Environment, pp. 111-116. 125. Salunkhe, S., Fabijanic, D., Nayak, J., and Hodgson, P., 2015. Effect of Single and Double Austenitization Treatments on the Microstructure and Hardness of AISI D2 Tool Steel. Materials Today: Proceedings, 2(4-5), pp. 1901-1906. 126. Samui, P., 2014. Determination of Surface and Hole Quality in Drilling of AISI D2 Cold Work Tool Steel Using MPMR, MARS and LSSVM. Journal of Advanced Manufacturing Systems, 13(04), pp. 237-246. 127. Sarikaya, M., Steinberg, B. G., and Thomas, G., 1982. Optimization of Fe/Cr/C Base Structural Steels for Improved Strength and Toughness. Metallurgical and Materials Transactions, 13(December), pp. 2227-2237. 128. Sarkar, S., Sekh, M., Mitra, S., and Bhattacharyya, B., 2008. Modeling and optimization of wire electrical discharge machining of y-TiAl in trim cutting operation. Journal of Materials Processing Technology, 205(1-3), pp. 376-387. 129. Sato, T., and Suzuki, I., 1990. WEDM Monitoring with a Statistical Pulse-Classification Method. Annals of the CIRP, 39(1), pp. 1-4. 130. Seder, A. M. F., A1 Hazza, M. H. F., and Adesta, E. Y. T., 2015. Modelling and analysing the cutting forces in high speed hard end milling using neural network. ARPN Journal of Engineering and Applied Sciences, 10(22), pp. 17270-17275. 131. Sen, R., Charkraborti, P., and Debbarma, J., 2014. Wear Behavior in Wire of Wire Cut EDM. Applied Mechanics and Materials, 704, pp. 70-76. 132. Shah, A., Mufti, N. A., Rakwal, D., and Bamberg, E., 2011. Material removal rate, kerf, and surface roughness of tungsten carbide machined with wire electrical discharge machining. Journal of Materials Engineering and Performance, 20(1), pp. 71-76. 133. Shandilya, P., Jain, P. K., and Jain, N. K., 2012. Parametric Optimization During Wire Electrical Discharge Machining using Response Surface Methodology. Procedia Engineering, 38, pp. 2371-2377. 134. Sharma, P., Chakradhar, D., and Narendranath, S., 2016. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application. Journal of Materials Engineering and Performance, 25(9), pp. 3672-3681. 135. Singh, K., Khatirkar, R. K., and Sapate, S. G., 2015. Microstructure evolution and abrasive wear behavior of D2 steel. Wear, 328-329, pp. 206-216. 136. Singh, M. A., Sarma, D. K., Hanzel, O., Sedlacek, J., and Sajgalik, P., 2017. Machinability analysis of multi walled carbon nanotubes filled alumina composites in wire electrical discharge machining process. Journal of the European Ceramic Society, 37(9), pp. 3107-3114. 137. Singh Nain, S., Garg, D., and Kumar, S., 2017. Prediction of the Performance Characteristics of WEDM on Udimet-L605 Using Different Modelling Techniques. Materials Today: Proceedings, 4(2), pp. 546-556. 138. Singh, V., and Pradhan, S. K., 2014. Optimization of WEDM Process Parameters. Applied Mechanics and Materials, 592-594, pp. 831-835. 139. Sireli, E., Orhon, N., and Sireli, G. K., 2017. Effects of wire-electro discharge machining process on surface integrity of WC-lOCo alloy. International Journal of Refractory Metals and Hard Materials,64, pp. 190-199. 140. Sommer, C., and Sommer, S., 2005. Profiting With Wire EDM. Complete EDM Handbook, pp. 45-60. 141. Srithar, A., Palanikumar, K.„and Durgaprasad, B., 2014. Experimental investigation and surface roughness analysis on hard turning of AISI D2 steel using coated Carbide insert. Procedia Engineering, 97, pp. 72-77. 142. Stradomski, G., 2014. The Role of Carbon in the Mechanism of Ferritic-Austenitic Cast Steel Solidification. 14(3), pp. 83-86. 143. Tai, T. Y., and Lu, S. J., 2009. Improving the fatigue life of electro-discharge-machined SDK11 tool steel via the suppression of surface cracks. International Journal of Fatigue, 31(3), pp. 433-438. 144. Tchoufang Tchuindjang, J., and Lecomte-Beckers, J., 2011. Study of the Origin of the Unexpected Pearlite during the Cooling Stage of Two Cast High-Speed Steels. Solid State Phenomena, 172-174, pp. 803-808. 145. Thomas, D., Kumar, R., Singh, G. K., Sinha, P., and Mishra, S., 2015. Modelling of Surface Roughness in Coated Wire Electric Discharge Machining through Response Surface Methodology. Materials Today: Proceedings, 2(4-5), pp. 3520-3526. 146. Tian, X., Wang, L. M., Wang, J. L., Liu, Y. B., An, J„ and Cao, Z. Y, 2008. The microstructure and mechanical properties of Mg-3A1-3RE alloys. Journal of Alloys and Compounds, 465(1-2), pp. 412-416. 147. Tobola, D., Brostow, W., Czechowski, K., and Rusek, P., 2017. Improvement of wear resistance of some cold working tool steels. Wear, 382-383, pp. 29-39. 148. Tool, D. C., 2014. Morphological Evolution during Partial Re-Melting. Sains Malaysiana, 43(8), pp. 1213-1219. 149. Torkamani, H., Raygan, S., and Rassizadehghani, J., 2014. Comparing microstructure and mechanical properties of AISI D2 steel after bright hardening and oil quenching. Materials and Design, 54, pp. 1049-1055. 150. Tosun, N., and Cogun, C., 2003. An investigation on wire wear in WEDM. Journal of Materials Processing Technology, 134(3), pp. 273-278. 151. Tzeng, C. J., Yang, Y. K., Hsieh, M. H., and Jeng, M. C., 2011. Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(6), pp. 841-852. 152. Ugrasen, G., Ravindra, H. V., Prakash, G. V. N., and Keshavamurthy, R., 2014. Process Optimization and Estimation of Machining Performances Using Artificial Neural Network in Wire EDM. Procedia Materials Science,6, pp. 1752-1760. 153. Varaprasad, B., Srinivasa Rao, C., and Vinay, P. V., 2014b. Effect of machining parameters on tool wear in hard turning of AISI D3 Steel. Procedia Engineering, 97, pp. 338-345. 154. Varaprasad, B., Srinivasa Rao, C., and Vinay, P. V., 2014a. Effect of machining parameters on tool wear in hard turning of AISI D3 Steel. Procedia Engineering, 97, pp. 338-345. 155. Vates, U. K., Singh, N. K., and Singh, R. V., 2014. Effect of alloying content on surface roughness of die materials at optimal parametric condition using WEDM. International Journal of Applied Engineering Research, 9(19), pp. 5301-5312. 156. Venkatraman, M., and Neumann, J. P., 1990. The C-Cr (Carbon-Chromium) System. Bulletin of Alloy Phase Diagrams, 11(2), pp. 152-159. 157. Wang, B., Liu, Y., and Ye, J., 2013. Mechanical properties and electronic structures of VC, V4C3 and V8C7 from first principles. Physica Scripta, 88(1), pp. 1-9. 158. Wang, C. Y., Shi, J., Cao, W. Q., and Dong, H., 2010. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel. Materials Science and Engineering, 527(15), pp. 3442-3449. 159. Wieczerzak, K., Balaa, P., Stepien, M., Cios, G., and Koziel, T., 2015. The characterization of cast Fe-Cr-C alloy. Archives of Metallurgy and Materials, 60(2), pp. 779-782. 160. Wieczerzak, K., Bala, P., Stepien, M., Cios, G., and Koziel, T., 2016. Fonnation of eutectic carbides in Fe-Cr-Mo-C alloy during non-equilibrium crystallization. Materials and Design, 94, pp. 61-68. 161. Wieczerzak, K., Bala, P., Stqpien, M., Cios, G., and Koziel, T., 2015. Microstructural aspects of cast Fe-Cr-Mo-C alloy. Conference proceedings Metal 2015, pp. 1-6. 162. Wiengmoon, A., 2011. Carbides in high chromium cast irons. Naresuan University Engineering Journal, 6(1), pp. 1-8. 163. Wilmes, S., and Kientopf, G., 2002. Carbide Dissolution Rate and Carbide Contents in Usual High Alloyed Tool Steels at Austenitizing Temperatures Between 900 °C and 1250 °C. 6th International Tooling Conference, pp. 533-547. 164. Wilmes, S., and Zwick, G., 2002. Effect of Niobium and Vanadium As an Alloying Element in Tool Steels With High Chromium Content. 6th International Tooling Conference, pp. 269-287. 165. Xiao, D. H., Wang, J. N., Ding, D. Y., and Yang, H. L., 2003. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy. Journal of Alloys and Compounds, 352(1-2), pp. 84-88. 166. Yan, H. S., Lee, R. S., and Yang, Y. C., 1995. An algorithm for surface design and tool path generation in wire-cut electrical discharge machining. International Journal of Machine Tools and Manufacture, 35(12), pp. 1703-1714. 167. Yan, M. T., and Huang, P. H., 2004. Accuracy improvement of wire-EDM by real-time wire tension control. International Journal of Machine Tools and Manufacture,44(7-8), pp. 807-814. 168. Yan, M. T., and Liao, Y. S., 1996. Monitoring and self-learning fuzzy control for wire rupture prevention in wire electrical discharge machining. International Journal of Machine Tools and Manufacture, 36(3), pp. 339-353. 169. Yang, M., and Lee, E., 1996. NC verification for wire-EDM using an R-map. CAD Computer Aided Design, 28(9), pp. 733-740. 170. Yang, R. T., Tzeng, C. J., Yang, Y. K., and Hsieh, M. H., 2012. Optimization of wire electrical discharge machining process parameters for cutting tungsten. International Journal of Advanced Manufacturing Technology, 60(1-4), pp. 135-147. 171. Yasavol, N., Abdollah-Zadeh, A., Ganjali, M., and Alidokht, S. A., 2013. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel. Applied Surface Science, 265, pp. 653-662. 172. Yaso, M., Hayashi, S., Morito, S., Ohba, T., Kubota, K., and Murakami, K., 2009. Characteristics of Retained Austenite in Quenched High C-High Cr Alloy Steels. Materials Transactions, 50(2), pp. 275-279. 173. Yun, X., Zhou, Y., Yang, J., Xing, X., Ren, X., Yang, Y., and Yang, Q., 2015. Refinement of nano-Y on microstructure of hypereutectic Fe-Cr-C hardfacing coatings. Journal of Rare Earths, 33(6), pp. 671-678. 174. Zelic, K., Burja, J., McGuiness, P. J., and Godec, M., 2018. Effect of Rare Earth Elements on the Morphology of Eutectic Carbides in AISI D2 Tool Steels: Experimental and Modelling Approaches. Scientific Reports, 8(1), pp. 1-8. 175. Zhang, C., 2014b. Effect of wire electrical discharge machining (WEDM) parameters on surface integrity of nanocomposite ceramics. Ceramics International, 40(7), pp. 9657-9662. 176. Zhang, C., 2014a. Effect of wire electrical discharge machining (WEDM) parameters on surface integrity of nanocomposite ceramics. Ceramics International, 40(7), pp. 1-6. 177. Zhi, X., Liu, J., Xing, J., and Ma, S. 2014. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron. Materials Science and Engineering, 603, pp. 98-103. 178. Zhou, T., Xia, H., Yang, M., Zhou, Z., Chen, K.., Hu, J., and Chen, Z., 2011. Investigation on microstructure characterizations and phase compositions of rapidly solidification/powder metallurgy Mg-6wt.% Zn-5wt.% Ce-1.5wt.% Ca alloy. Journal of Alloys and Compounds, 509(9), pp. 145-149.